Baselight

Data Associated With "Primary Quantum Thermometry Of Mm-wave Blackbody Radiation Via Induced State Transfer In Rydberg States Of Cold Atoms"

National Institute of Standards and Technology

@usgov.national_institute_of_standard_data_associated_with_pr_9e49ea84

Loading...
Loading...

About this Dataset

Data Associated With "Primary Quantum Thermometry Of Mm-wave Blackbody Radiation Via Induced State Transfer In Rydberg States Of Cold Atoms"

Rydberg states of alkali atoms are highly sensitive to electromagnetic radiation in the GHz-to-THz regime because their transitions have large electric dipole moments. Consequently, environmental blackbody radiation (BBR) can couple Rydberg states together at ?s timescales. Here, we track the BBR-induced transfer of a prepared Rydberg state to its neighbors and use the evolution of these state populations to characterize the BBR field at the relevant wavelengths, primarily at 130 GHz. We use selective field ionization readout of Rydberg states with principal quantum number n?30 in 85Rb and substantiate our ionization signal with a theoretical model. With this detection method, we measure the associated blackbody-radiation-induced time dynamics of these states, reproduce the results with a simple semi-classical population transfer model, and demonstrate that this measurement is temperature sensitive with a statistical sensitivity to the fractional temperature uncertainty of 0.09 Hz?1/2, corresponding to 26 K?Hz?1/2 at room temperature. This represents a calibration-free SI-traceable temperature measurement, for which we calculate a systematic fractional temperature uncertainty of 0.006, corresponding to 2 K at room temperature when used as a primary temperature standard.Included in this dataset is the data associated with every plot in the paper, separated by figure number.
Organization: National Institute of Standards and Technology
Last updated: 2025-03-14T15:20:40.159848
Tags: atoms, blackbody, quantum, radiation, radiometry, rubidium, rydberg, thermometry

Tables

Fig 2a

@usgov.national_institute_of_standard_data_associated_with_pr_9e49ea84.fig_2a
  • 2.55 MB
  • 300 rows
  • 827 columns
Loading...

CREATE TABLE fig_2a (
  "eapplied_kv_m" DOUBLE,
  "n_32s_1_2_theoretical_sfi" DOUBLE,
  "unnamed_2" VARCHAR,
  "eapplied_kv_m_1" DOUBLE,
  "ionization_potential_ghz" DOUBLE,
  "unnamed_5" VARCHAR,
  "e_field_kv_cm" DOUBLE,
  "n_27s_1_2_energy_ghz" DOUBLE,
  "n_27p_1_2_energy_ghz" DOUBLE,
  "n_27p_3_2_energy_ghz" DOUBLE,
  "n_27d_3_2_energy_ghz" DOUBLE,
  "n_27d_5_2_energy_ghz" DOUBLE,
  "n_27f_5_2_energy_ghz" DOUBLE,
  "n_27f_7_2_energy_ghz" DOUBLE,
  "n_27g_7_2_energy_ghz" DOUBLE,
  "n_27g_9_2_energy_ghz" DOUBLE,
  "n_27h_9_2_energy_ghz" DOUBLE,
  "n_27h_11_2_energy_ghz" DOUBLE,
  "n_27i_11_2_energy_ghz" DOUBLE,
  "n_27i_13_2_energy_ghz" DOUBLE,
  "n_27j_13_2_energy_ghz" DOUBLE,
  "n_27j_15_2_energy_ghz" DOUBLE,
  "n_27k_15_2_energy_ghz" DOUBLE,
  "n_27k_17_2_energy_ghz" DOUBLE,
  "n_27l_17_2_energy_ghz" DOUBLE,
  "n_27l_19_2_energy_ghz" DOUBLE,
  "n_27m_19_2_energy_ghz" DOUBLE,
  "n_27m_21_2_energy_ghz" DOUBLE,
  "n_27n_21_2_energy_ghz" DOUBLE,
  "n_27n_23_2_energy_ghz" DOUBLE,
  "n_27o_23_2_energy_ghz" DOUBLE,
  "n_27o_25_2_energy_ghz" DOUBLE,
  "n_27p_25_2_energy_ghz" DOUBLE,
  "n_27p_27_2_energy_ghz" DOUBLE,
  "n_27q_27_2_energy_ghz" DOUBLE,
  "n_27q_29_2_energy_ghz" DOUBLE,
  "n_27r_29_2_energy_ghz" DOUBLE,
  "n_27r_31_2_energy_ghz" DOUBLE,
  "n_27s_31_2_energy_ghz" DOUBLE,
  "n_27s_33_2_energy_ghz" DOUBLE,
  "n_27t_33_2_energy_ghz" DOUBLE,
  "n_27t_35_2_energy_ghz" DOUBLE,
  "n_27u_35_2_energy_ghz" DOUBLE,
  "n_27u_37_2_energy_ghz" DOUBLE,
  "n_27v_37_2_energy_ghz" DOUBLE,
  "n_27v_39_2_energy_ghz" DOUBLE,
  "n_27w_39_2_energy_ghz" DOUBLE,
  "n_27w_41_2_energy_ghz" DOUBLE,
  "n_28s_1_2_energy_ghz" DOUBLE,
  "n_28p_1_2_energy_ghz" DOUBLE,
  "n_28p_3_2_energy_ghz" DOUBLE,
  "n_28d_3_2_energy_ghz" DOUBLE,
  "n_28d_5_2_energy_ghz" DOUBLE,
  "n_28f_5_2_energy_ghz" DOUBLE,
  "n_28f_7_2_energy_ghz" DOUBLE,
  "n_28g_7_2_energy_ghz" DOUBLE,
  "n_28g_9_2_energy_ghz" DOUBLE,
  "n_28h_9_2_energy_ghz" DOUBLE,
  "n_28h_11_2_energy_ghz" DOUBLE,
  "n_28i_11_2_energy_ghz" DOUBLE,
  "n_28i_13_2_energy_ghz" DOUBLE,
  "n_28j_13_2_energy_ghz" DOUBLE,
  "n_28j_15_2_energy_ghz" DOUBLE,
  "n_28k_15_2_energy_ghz" DOUBLE,
  "n_28k_17_2_energy_ghz" DOUBLE,
  "n_28l_17_2_energy_ghz" DOUBLE,
  "n_28l_19_2_energy_ghz" DOUBLE,
  "n_28m_19_2_energy_ghz" DOUBLE,
  "n_28m_21_2_energy_ghz" DOUBLE,
  "n_28n_21_2_energy_ghz" DOUBLE,
  "n_28n_23_2_energy_ghz" DOUBLE,
  "n_28o_23_2_energy_ghz" DOUBLE,
  "n_28o_25_2_energy_ghz" DOUBLE,
  "n_28p_25_2_energy_ghz" DOUBLE,
  "n_28p_27_2_energy_ghz" DOUBLE,
  "n_28q_27_2_energy_ghz" DOUBLE,
  "n_28q_29_2_energy_ghz" DOUBLE,
  "n_28r_29_2_energy_ghz" DOUBLE,
  "n_28r_31_2_energy_ghz" DOUBLE,
  "n_28s_31_2_energy_ghz" DOUBLE,
  "n_28s_33_2_energy_ghz" DOUBLE,
  "n_28t_33_2_energy_ghz" DOUBLE,
  "n_28t_35_2_energy_ghz" DOUBLE,
  "n_28u_35_2_energy_ghz" DOUBLE,
  "n_28u_37_2_energy_ghz" DOUBLE,
  "n_28v_37_2_energy_ghz" DOUBLE,
  "n_28v_39_2_energy_ghz" DOUBLE,
  "n_28w_39_2_energy_ghz" DOUBLE,
  "n_28w_41_2_energy_ghz" DOUBLE,
  "n_29s_1_2_energy_ghz" DOUBLE,
  "n_29p_1_2_energy_ghz" DOUBLE,
  "n_29p_3_2_energy_ghz" DOUBLE,
  "n_29d_3_2_energy_ghz" DOUBLE,
  "n_29d_5_2_energy_ghz" DOUBLE,
  "n_29f_5_2_energy_ghz" DOUBLE,
  "n_29f_7_2_energy_ghz" DOUBLE,
  "n_29g_7_2_energy_ghz" DOUBLE,
  "n_29g_9_2_energy_ghz" DOUBLE,
  "n_29h_9_2_energy_ghz" DOUBLE,
  "n_29h_11_2_energy_ghz" DOUBLE
);

Fig 2b

@usgov.national_institute_of_standard_data_associated_with_pr_9e49ea84.fig_2b
  • 61.96 KB
  • 1000 rows
  • 17 columns
Loading...

CREATE TABLE fig_2b (
  "eapplied_kv_m" DOUBLE,
  "electron_signal_at_t_bbr_14_us" DOUBLE,
  "electron_signal_at_t_bbr_22_us" DOUBLE,
  "electron_signal_at_t_bbr_32_us" DOUBLE,
  "electron_signal_at_t_bbr_52_us" DOUBLE,
  "electron_signal_at_t_bbr_92_us" DOUBLE,
  "unnamed_6" VARCHAR,
  "eapplied_kv_m_1" DOUBLE,
  "n_32s_1_2_theoretical_sfi" DOUBLE,
  "eapplied_kv_m_2" DOUBLE,
  "n_31p_3_2_theoretical_sfi" DOUBLE,
  "eapplied_kv_m_3" DOUBLE,
  "n_32p_3_2_theoretical_sfi" DOUBLE,
  "eapplied_kv_m_4" DOUBLE,
  "n_30p_3_2_theoretical_sfi" DOUBLE,
  "eapplied_kv_m_5" DOUBLE,
  "n_33p_3_2_theoretical_sfi" DOUBLE
);

Fig 3a

@usgov.national_institute_of_standard_data_associated_with_pr_9e49ea84.fig_3a
  • 99.83 KB
  • 1001 rows
  • 22 columns
Loading...

CREATE TABLE fig_3a (
  "tbbr" VARCHAR,
  "n_1_20e_01" VARCHAR,
  "n_1_30e_01" VARCHAR,
  "n_1_40e_01" VARCHAR,
  "n_1_50e_01" VARCHAR,
  "n_1_70e_01" VARCHAR,
  "n_2_20e_01" VARCHAR,
  "n_2_70e_01" VARCHAR,
  "n_3_20e_01" VARCHAR,
  "n_3_70e_01" VARCHAR,
  "n_4_20e_01" VARCHAR,
  "n_4_70e_01" VARCHAR,
  "n_5_20e_01" VARCHAR,
  "n_6_20e_01" VARCHAR,
  "n_7_20e_01" VARCHAR,
  "n_8_20e_01" VARCHAR,
  "n_9_70e_01" VARCHAR,
  "n_1_12e_02" VARCHAR,
  "n_1_32e_02" VARCHAR,
  "n_1_62e_02" VARCHAR,
  "n_2_12e_02" VARCHAR,
  "n_2_52e_02" VARCHAR
);

Fig 3b

@usgov.national_institute_of_standard_data_associated_with_pr_9e49ea84.fig_3b
  • 12.98 KB
  • 50 rows
  • 13 columns
Loading...

CREATE TABLE fig_3b (
  "t_bbr_us" DOUBLE,
  "n33p_3_2" DOUBLE,
  "sigma_n33p_3_2" DOUBLE,
  "n32p_3_2" DOUBLE,
  "sigma_n32p_3_2" DOUBLE,
  "n32s_3_2_n31p_3_2" DOUBLE,
  "sigma_n32s_3_2_n31p_3_2" DOUBLE,
  "unnamed_7" VARCHAR,
  "t_bbr_us_1" DOUBLE,
  "theory_n32s_1_2" DOUBLE,
  "theory_n32s_1_2_n31p_3_2" DOUBLE,
  "theory_n32p_3_2" DOUBLE,
  "theory_n33p_3_2" DOUBLE
);

Fig 4

@usgov.national_institute_of_standard_data_associated_with_pr_9e49ea84.fig_4
  • 12.49 KB
  • 12 rows
  • 16 columns
Loading...

CREATE TABLE fig_4 (
  "t_bbr_us" DOUBLE,
  "r_21c" DOUBLE,
  "sigma_r_21c" DOUBLE,
  "theory_r_21c" DOUBLE,
  "r_39c" DOUBLE,
  "sigma_r_39c" DOUBLE,
  "theory_r_39c" DOUBLE,
  "r_63c" DOUBLE,
  "sigma_r_63c" DOUBLE,
  "theory_r_63c" DOUBLE,
  "unnamed_10" VARCHAR,
  "unnamed_11" VARCHAR,
  "texp_degrees_c" DOUBLE,
  "sigma_texp_degrees_c" DOUBLE,
  "tprimary_degrees_c" DOUBLE,
  "sigma_tprimary_degrees_c" DOUBLE
);

Share link

Anyone who has the link will be able to view this.