Coverage of Social Insurance Programs in Richest Quintile
Percent of Population Eligible
By data.world's Admin [source]
About this dataset
This dataset offers a unique insight into the coverage of social insurance programs for the wealthiest quintile of populations around the world. It reveals how many individuals in each country are receiving support from old age contributory pensions, disability benefits, and social security and health insurance benefits such as occupational injury benefits, paid sick leave, maternity leave, and more. This data provides an invaluable resource to understand the health and well-being of those most financially privileged in society – often having greater impact on decision making than other groups. With up-to-date figures from 2019-05-11 this dataset is invaluable in uncovering where there is work to be done for improved healthcare provision in each country across the world
More Datasets
For more datasets, click here.
Featured Notebooks
- 🚨 Your notebook can be here! 🚨!
How to use the dataset
-
Understand the context: Before you begin analyzing this dataset, it is important to understand the information that it provides. Take some time to read the description of what is included in the dataset, including a clear understanding of the definitions and scope of coverage provided with each data point.
-
Examine the data: Once you have a general understanding of this dataset's contents, take some time to explore its contents in more depth. What specific questions does this dataset help answer? What kind of insights does it provide? Are there any missing pieces?
-
Clean & Prepare Data: After you've preliminarily examined its content, start preparing your data for further analysis and visualization. Clean up any formatting issues or irregularities present in your data set by correcting typos and eliminating unnecessary rows or columns before working with your chosen programming language (I prefer R for data manipulation tasks). Additionally, consider performing necessary transformations such as sorting or averaging values if appropriate for the findings you wish to draw from your analysis.
-
Visualize Results: Once you've cleaned and prepared your data, use visualizations such as charts, graphs or tables to reveal patterns within it that support specific conclusions about how insurance coverage under social programs vary among different groups within society's quintiles - based on age groups etc.. This type of visualization allows those who aren't familiar with programming to process complex information quickly and accurately than when displayed numerically in tabular form only!
5 Final Analysis & Export Results: Finally export your visuals into presentation-ready formats (e.g., PDFs) which can be shared with colleagues! Additionally use these results as part of a narrative conclusion report providing an accurate assessment and meaningful interpretation about how social insurance programs vary between different members within society's quintiles (i..e., accordingest vs poorest), along with potential policy implications relevant for implementing effective strategies that improve access accordingly!
Research Ideas
- Analyzing the effectiveness of social insurance programs by comparing the coverage levels across different geographic areas or socio-economic groups;
- Estimating the economic impact of social insurance programs on local and national economies by tracking spending levels and revenues generated;
- Identifying potential problems with access to social insurance benefits, such as racial or gender disparities in benefit coverage
Acknowledgements
If you use this dataset in your research, please credit the original authors.
Data Source
License
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication
No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
Columns
File: coverage-of-social-insurance-programs-in-richest-quintile-of-population-1.csv
Acknowledgements
If you use this dataset in your research, please credit the original authors.
If you use this dataset in your research, please credit data.world's Admin.