Baselight

Bank Churn Pre-processed Dataset

A complete pipeline from raw data to model-ready features 🚀

@kaggle.faizanyousafonly_bank_churn_pre_processed_dataset

Train Preprocessed
@kaggle.faizanyousafonly_bank_churn_pre_processed_dataset.train_preprocessed

  • 3.35 MB
  • 165034 rows
  • 19 columns
id

Id

customerid

CustomerId

surname

Surname

creditscore

CreditScore

age

Age

tenure

Tenure

balance

Balance

numofproducts

NumOfProducts

hascrcard

HasCrCard

isactivemember

IsActiveMember

estimatedsalary

EstimatedSalary

exited

Exited

agecategory

AgeCategory

creditscorecategory

CreditScoreCategory

balancecategory

BalanceCategory

salarycategory

SalaryCategory

geography_germany

Geography Germany

geography_spain

Geography Spain

gender_male

Gender Male

15674932Okwudilichukwu66833321181449.9721351
115749177Okwudiliolisa62733121149503.521311
215694510Hsueh678401021184866.6932351
315741417Kao581342148882.5411184560.8821121
415766172Chiemenam71633521115068.83223611
515771669Genovese588364131778.5811136024.311311411
615692819Ch'ang593308144772.691129792.112116
715669611Chukwuebuka678371138476.4111106851.6321311
815691707Manna67643421142917.1332341
915591721Cattaneo58340481274.33111170843.073111

CREATE TABLE train_preprocessed (
  "id" BIGINT,
  "customerid" BIGINT,
  "surname" VARCHAR,
  "creditscore" BIGINT,
  "age" DOUBLE,
  "tenure" BIGINT,
  "balance" DOUBLE,
  "numofproducts" BIGINT,
  "hascrcard" DOUBLE,
  "isactivemember" DOUBLE,
  "estimatedsalary" DOUBLE,
  "exited" BIGINT,
  "agecategory" BIGINT,
  "creditscorecategory" DOUBLE,
  "balancecategory" DOUBLE,
  "salarycategory" DOUBLE,
  "geography_germany" DOUBLE,
  "geography_spain" DOUBLE,
  "gender_male" DOUBLE
);

Share link

Anyone who has the link will be able to view this.