Baselight

Bank Churn Pre-processed Dataset

A complete pipeline from raw data to model-ready features 🚀

@kaggle.faizanyousafonly_bank_churn_pre_processed_dataset

Test Preprocessed
@kaggle.faizanyousafonly_bank_churn_pre_processed_dataset.test_preprocessed

  • 2.34 MB
  • 110023 rows
  • 18 columns
id

Id

customerid

CustomerId

surname

Surname

creditscore

CreditScore

age

Age

tenure

Tenure

balance

Balance

numofproducts

NumOfProducts

hascrcard

HasCrCard

isactivemember

IsActiveMember

estimatedsalary

EstimatedSalary

agecategory

AgeCategory

creditscorecategory

CreditScoreCategory

balancecategory

BalanceCategory

salarycategory

SalaryCategory

geography_germany

Geography Germany

geography_spain

Geography Spain

gender_male

Gender Male

16503415773898Lucchese58623221160976.75213
16503515782418Nott6834621172549.273232
16503615807120K?65634721138882.092134
16503715808905O'Donnell68136811113931.5732331
16503815607314Higgins7523810121263.6211139431331411
16503915672704Pearson593229251907.722131
16504015647838Onyemere682454211157878.6732311
16504115775307Hargreaves539478211126784.2934341
16504215653937Hsueh845473111096.911194978.1313
16504315752344Teng64530521149195.44213411

CREATE TABLE test_preprocessed (
  "id" BIGINT,
  "customerid" BIGINT,
  "surname" VARCHAR,
  "creditscore" BIGINT,
  "age" DOUBLE,
  "tenure" BIGINT,
  "balance" DOUBLE,
  "numofproducts" BIGINT,
  "hascrcard" DOUBLE,
  "isactivemember" DOUBLE,
  "estimatedsalary" DOUBLE,
  "agecategory" BIGINT,
  "creditscorecategory" DOUBLE,
  "balancecategory" DOUBLE,
  "salarycategory" DOUBLE,
  "geography_germany" DOUBLE,
  "geography_spain" DOUBLE,
  "gender_male" DOUBLE
);

Share link

Anyone who has the link will be able to view this.