FC Bayern Face Recognation
Bayern Munich Players Dataset for Face recognation Project
@kaggle.eyadgk_fc_bayern_face_recognation
Bayern Munich Players Dataset for Face recognation Project
@kaggle.eyadgk_fc_bayern_face_recognation
A Bayern Munich Players dataset Collected from Google
The data contains 5 Bayern Munich players and each player has about 100 random raw images collected from Google after cleaning the data each player got around from 30 to 60 images
so our data have 5 classes:
The Data contains 230 rows and 4097 Columns
4096 Features are the Pixels of the Images and the Last Column is the target column including the class for each row
Data is already Cleaned, Preprocessed and Scaled
Apply machine and deep learning algorithms to the data and build a face recognition system that Recognizes any image of these five players
CREATE TABLE bayern (
"n_0" DOUBLE -- 0,
"n_1" DOUBLE -- 1,
"n_2" DOUBLE -- 2,
"n_3" DOUBLE -- 3,
"n_4" DOUBLE -- 4,
"n_5" DOUBLE -- 5,
"n_6" DOUBLE -- 6,
"n_7" DOUBLE -- 7,
"n_8" DOUBLE -- 8,
"n_9" DOUBLE -- 9,
"n_10" DOUBLE -- 10,
"n_11" DOUBLE -- 11,
"n_12" DOUBLE -- 12,
"n_13" DOUBLE -- 13,
"n_14" DOUBLE -- 14,
"n_15" DOUBLE -- 15,
"n_16" DOUBLE -- 16,
"n_17" DOUBLE -- 17,
"n_18" DOUBLE -- 18,
"n_19" DOUBLE -- 19,
"n_20" DOUBLE -- 20,
"n_21" DOUBLE -- 21,
"n_22" DOUBLE -- 22,
"n_23" DOUBLE -- 23,
"n_24" DOUBLE -- 24,
"n_25" DOUBLE -- 25,
"n_26" DOUBLE -- 26,
"n_27" DOUBLE -- 27,
"n_28" DOUBLE -- 28,
"n_29" DOUBLE -- 29,
"n_30" DOUBLE -- 30,
"n_31" DOUBLE -- 31,
"n_32" DOUBLE -- 32,
"n_33" DOUBLE -- 33,
"n_34" DOUBLE -- 34,
"n_35" DOUBLE -- 35,
"n_36" DOUBLE -- 36,
"n_37" DOUBLE -- 37,
"n_38" DOUBLE -- 38,
"n_39" DOUBLE -- 39,
"n_40" DOUBLE -- 40,
"n_41" DOUBLE -- 41,
"n_42" DOUBLE -- 42,
"n_43" DOUBLE -- 43,
"n_44" DOUBLE -- 44,
"n_45" DOUBLE -- 45,
"n_46" DOUBLE -- 46,
"n_47" DOUBLE -- 47,
"n_48" DOUBLE -- 48,
"n_49" DOUBLE -- 49,
"n_50" DOUBLE -- 50,
"n_51" DOUBLE -- 51,
"n_52" DOUBLE -- 52,
"n_53" DOUBLE -- 53,
"n_54" DOUBLE -- 54,
"n_55" DOUBLE -- 55,
"n_56" DOUBLE -- 56,
"n_57" DOUBLE -- 57,
"n_58" DOUBLE -- 58,
"n_59" DOUBLE -- 59,
"n_60" DOUBLE -- 60,
"n_61" DOUBLE -- 61,
"n_62" DOUBLE -- 62,
"n_63" DOUBLE -- 63,
"n_64" DOUBLE -- 64,
"n_65" DOUBLE -- 65,
"n_66" DOUBLE -- 66,
"n_67" DOUBLE -- 67,
"n_68" DOUBLE -- 68,
"n_69" DOUBLE -- 69,
"n_70" DOUBLE -- 70,
"n_71" DOUBLE -- 71,
"n_72" DOUBLE -- 72,
"n_73" DOUBLE -- 73,
"n_74" DOUBLE -- 74,
"n_75" DOUBLE -- 75,
"n_76" DOUBLE -- 76,
"n_77" DOUBLE -- 77,
"n_78" DOUBLE -- 78,
"n_79" DOUBLE -- 79,
"n_80" DOUBLE -- 80,
"n_81" DOUBLE -- 81,
"n_82" DOUBLE -- 82,
"n_83" DOUBLE -- 83,
"n_84" DOUBLE -- 84,
"n_85" DOUBLE -- 85,
"n_86" DOUBLE -- 86,
"n_87" DOUBLE -- 87,
"n_88" DOUBLE -- 88,
"n_89" DOUBLE -- 89,
"n_90" DOUBLE -- 90,
"n_91" DOUBLE -- 91,
"n_92" DOUBLE -- 92,
"n_93" DOUBLE -- 93,
"n_94" DOUBLE -- 94,
"n_95" DOUBLE -- 95,
"n_96" DOUBLE -- 96,
"n_97" DOUBLE -- 97,
"n_98" DOUBLE -- 98,
"n_99" DOUBLE -- 99
);Anyone who has the link will be able to view this.