Baselight

Sentiment Analysis Datasets

Each entry unveils unique stories—moments of surprise, excitement, admiration, t

@kaggle.willianoliveiragibin_sentiment_analysis_datasets

Loading...
Loading...

About this Dataset

Sentiment Analysis Datasets


The Social Media Sentiments Analysis Dataset offers a fascinating glimpse into the intricate tapestry of emotions, trends, and interactions prevalent across diverse social media platforms. This dataset serves as a snapshot of user-generated content, encompassing textual expressions, timestamps, hashtags, geographical locations, engagement metrics such as likes and retweets, and user identifiers. Each entry unveils a unique narrative—moments of surprise, excitement, admiration, thrill, contentment, and more—shared by individuals globally.

Key Features

Text: The user-generated content, a window into diverse sentiments.

Sentiment: Emotions categorized for insightful analysis.

Timestamp: Date and time details providing a temporal dimension.

User: Unique identifiers of contributors, enabling user-specific insights.

Platform: Indicates the social media platform of origin, allowing platform-specific analysis.

Hashtags: Identifies trending topics and themes, unraveling popular narratives.

Likes: Quantifies user engagement, reflecting content appreciation.

Retweets: Reflects content popularity, showcasing the extent of its reach.

Country: Geographical origin of each post, facilitating geographical analysis.

Year, Month, Day, Hour: Temporal details for comprehensive temporal analysis.

How to Utilize The Social Media Sentiments Analysis Dataset 📊

The richness of the dataset allows for versatile analytical applications:

Sentiment Analysis:
Explore the emotional landscape by categorizing user-generated content into surprise, excitement, admiration, thrill, contentment, and more.

Temporal Analysis:
Investigate trends over time, identifying patterns, fluctuations, or recurring themes in social media content.

User Behavior Insights:
Analyze user engagement through likes and retweets, discovering popular content and user preferences.

Platform-Specific Analysis:
Examine variations in content across different social media platforms, understanding how sentiments vary.

Hashtag Trends:
Identify trending topics and themes by analyzing hashtags, uncovering popular or recurring ones.

Geographical Analysis:
Explore content distribution based on the country of origin, understanding regional variations in sentiment and topic preferences.

User Identification:
Utilize user identifiers to track specific contributors, analyzing the impact of influential users on sentiment trends.

Cross-Analysis:
Combine multiple features for in-depth insights. For example, analyze sentiment trends over time or across different platforms and countries.

In conclusion, the Social Media Sentiments Analysis Dataset provides a robust foundation for nuanced explorations into the dynamic world of social media interactions, offering researchers and analysts a wealth of opportunities for comprehensive insights.

Tables

Country

@kaggle.willianoliveiragibin_sentiment_analysis_datasets.country
  • 2.46 kB
  • 732 rows
  • 2 columns
Loading...
CREATE TABLE country (
  "countr" VARCHAR,
  "unnamed_1" VARCHAR  -- Unnamed: 1
);

Day

@kaggle.willianoliveiragibin_sentiment_analysis_datasets.day
  • 2.65 kB
  • 732 rows
  • 2 columns
Loading...
CREATE TABLE day (
  "da" BIGINT,
  "unnamed_1" VARCHAR  -- Unnamed: 1
);

Hour

@kaggle.willianoliveiragibin_sentiment_analysis_datasets.hour
  • 2.53 kB
  • 732 rows
  • 2 columns
Loading...
CREATE TABLE hour (
  "ho" BIGINT,
  "r" VARCHAR
);

Likes

@kaggle.willianoliveiragibin_sentiment_analysis_datasets.likes
  • 2.65 kB
  • 732 rows
  • 2 columns
Loading...
CREATE TABLE likes (
  "like" DOUBLE,
  "unnamed_1" VARCHAR  -- Unnamed: 1
);

Month

@kaggle.willianoliveiragibin_sentiment_analysis_datasets.month
  • 2.41 kB
  • 732 rows
  • 2 columns
Loading...
CREATE TABLE month (
  "mon" BIGINT,
  "h" VARCHAR
);

Tewetrs

@kaggle.willianoliveiragibin_sentiment_analysis_datasets.tewetrs
  • 3.44 kB
  • 732 rows
  • 4 columns
Loading...
CREATE TABLE tewetrs (
  "r" DOUBLE,
  "tw" VARCHAR,
  "unnamed_2" VARCHAR  -- Unnamed: 2,
  "ts" VARCHAR
);

Timestamp

@kaggle.willianoliveiragibin_sentiment_analysis_datasets.timestamp
  • 9.28 kB
  • 732 rows
  • 3 columns
Loading...
CREATE TABLE timestamp (
  "ti" VARCHAR,
  "esta" VARCHAR,
  "p" VARCHAR
);

Value Worlds

@kaggle.willianoliveiragibin_sentiment_analysis_datasets.value_worlds
  • 6.36 kB
  • 732 rows
  • 3 columns
Loading...
CREATE TABLE value_worlds (
  "va" BIGINT,
  "ue_wor" VARCHAR,
  "ds" VARCHAR
);

Worlds

@kaggle.willianoliveiragibin_sentiment_analysis_datasets.worlds
  • 5.93 kB
  • 732 rows
  • 2 columns
Loading...
CREATE TABLE worlds (
  "unnamed_0" BIGINT  -- Unnamed: 0,
  "orlds" VARCHAR
);

Year

@kaggle.willianoliveiragibin_sentiment_analysis_datasets.year
  • 2.48 kB
  • 732 rows
  • 2 columns
Loading...
CREATE TABLE year (
  "yea" BIGINT,
  "unnamed_1" VARCHAR  -- Unnamed: 1
);

Share link

Anyone who has the link will be able to view this.