Baselight

Grid Loss Prediction Dataset

A time series dataset for predicting loss in three electrical grids in Norway

@kaggle.trnderenergikraft_grid_loss_time_series_dataset

Train
@kaggle.trnderenergikraft_grid_loss_time_series_dataset.train

  • 3.07 MB
  • 17520 rows
  • 39 columns
unnamed_0

Unnamed: 0

demand

Demand

grid1_load

Grid1-load

grid1_loss

Grid1-loss

grid1_loss_prophet_daily

Grid1-loss-prophet-daily

grid1_loss_prophet_pred

Grid1-loss-prophet-pred

grid1_loss_prophet_trend

Grid1-loss-prophet-trend

grid1_loss_prophet_weekly

Grid1-loss-prophet-weekly

grid1_loss_prophet_yearly

Grid1-loss-prophet-yearly

grid1_temp

Grid1-temp

grid2_load

Grid2-load

grid2_loss

Grid2-loss

grid2_loss_prophet_daily

Grid2-loss-prophet-daily

grid2_loss_prophet_pred

Grid2-loss-prophet-pred

grid2_loss_prophet_trend

Grid2-loss-prophet-trend

grid2_loss_prophet_weekly

Grid2-loss-prophet-weekly

grid2_loss_prophet_yearly

Grid2-loss-prophet-yearly

grid2_1_temp

Grid2–1-temp

grid2_2_temp

Grid2–2-temp

grid3_load

Grid3-load

grid3_loss

Grid3-loss

grid3_loss_prophet_daily

Grid3-loss-prophet-daily

grid3_loss_prophet_pred

Grid3-loss-prophet-pred

grid3_loss_prophet_trend

Grid3-loss-prophet-trend

grid3_loss_prophet_weekly

Grid3-loss-prophet-weekly

grid3_loss_prophet_yearly

Grid3-loss-prophet-yearly

grid3_temp

Grid3-temp

season_x

Season X

season_y

Season Y

month_x

Month X

month_y

Month Y

week_x

Week X

week_y

Week Y

weekday_x

Weekday X

weekday_y

Weekday Y

holiday

Holiday

hour_x

Hour X

hour_y

Hour Y

has_incorrect_data

Has Incorrect Data

Fri Dec 01 2017 00:00:00 GMT+0000 (Coordinated Universal Time)351.2253662774449.53218.766267.85193.38225.586262.274810791016262.578399658203265.232360839844-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.5680647467311559-0.9009688679024191-0.4338837391175581
Fri Dec 01 2017 01:00:00 GMT+0000 (Coordinated Universal Time)344.4204580372439.03618.02267.55189.391400000000035.464262.461517333984262.839324951172265.247192382813-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.5680647467311559-0.9009688679024191-0.4338837391175580.96592582628906840.2588190451025207
Fri Dec 01 2017 02:00:00 GMT+0000 (Coordinated Universal Time)342.4132136714442.23718.246267.25170.542699999999974.922262.358520507813262.623046875265.378570556641-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.5680647467311559-0.9009688679024191-0.4338837391175580.86602540378443870.4999999999999999
Fri Dec 01 2017 03:00:00 GMT+0000 (Coordinated Universal Time)345.4270710594447.83618.645266.95187.4545.406262.498352050781262.581237792969265.624847412109-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.5680647467311559-0.9009688679024191-0.4338837391175580.70710678118654760.7071067811865475
Fri Dec 01 2017 04:00:00 GMT+0000 (Coordinated Universal Time)357.5612573713463.99519.823267.05189.69655.473262.377746582031262.526062011719265.755218505859-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.5680647467311559-0.9009688679024191-0.4338837391175580.50000000000000010.8660254037844386
Fri Dec 01 2017 05:00:00 GMT+0000 (Coordinated Universal Time)393.1512836735514.74823.797267.15199.708799999999975.785261.80810546875262.581420898438266.405303955078-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.5680647467311559-0.9009688679024191-0.4338837391175580.25881904510252070.9659258262890684
Fri Dec 01 2017 06:00:00 GMT+0000 (Coordinated Universal Time)445.3529003866576.11829.153267.25212.016999999999976.19260.785278320313263.041656494141266.063079833984-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.5680647467311559-0.9009688679024191-0.4338837391175586.123233995736766e-171
Fri Dec 01 2017 07:00:00 GMT+0000 (Coordinated Universal Time)464.8048818072593.98730.826267.35218.14056.401260.625701904297263.413482666016267.065612792969-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.5680647467311559-0.9009688679024191-0.433883739117558-0.25881904510252060.9659258262890684
Fri Dec 01 2017 08:00:00 GMT+0000 (Coordinated Universal Time)465.8348277152591.08630.551267.45218.49976.413260.9248046875263.839721679688267.047332763672-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.5680647467311559-0.9009688679024191-0.433883739117558-0.49999999999999980.8660254037844387
Fri Dec 01 2017 09:00:00 GMT+0000 (Coordinated Universal Time)465.8714191208588.16730.275267.55216.42816.341260.08251953125264.411651611328267.459930419922-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.5680647467311559-0.9009688679024191-0.433883739117558-0.70710678118654750.7071067811865476

CREATE TABLE train (
  "unnamed_0" TIMESTAMP,
  "demand" DOUBLE,
  "grid1_load" DOUBLE,
  "grid1_loss" DOUBLE,
  "grid1_loss_prophet_daily" DOUBLE,
  "grid1_loss_prophet_pred" DOUBLE,
  "grid1_loss_prophet_trend" DOUBLE,
  "grid1_loss_prophet_weekly" DOUBLE,
  "grid1_loss_prophet_yearly" DOUBLE,
  "grid1_temp" DOUBLE,
  "grid2_load" DOUBLE,
  "grid2_loss" DOUBLE,
  "grid2_loss_prophet_daily" DOUBLE,
  "grid2_loss_prophet_pred" DOUBLE,
  "grid2_loss_prophet_trend" DOUBLE,
  "grid2_loss_prophet_weekly" DOUBLE,
  "grid2_loss_prophet_yearly" DOUBLE,
  "grid2_1_temp" DOUBLE,
  "grid2_2_temp" DOUBLE,
  "grid3_load" DOUBLE,
  "grid3_loss" DOUBLE,
  "grid3_loss_prophet_daily" DOUBLE,
  "grid3_loss_prophet_pred" DOUBLE,
  "grid3_loss_prophet_trend" DOUBLE,
  "grid3_loss_prophet_weekly" DOUBLE,
  "grid3_loss_prophet_yearly" DOUBLE,
  "grid3_temp" DOUBLE,
  "season_x" DOUBLE,
  "season_y" DOUBLE,
  "month_x" DOUBLE,
  "month_y" DOUBLE,
  "week_x" DOUBLE,
  "week_y" DOUBLE,
  "weekday_x" DOUBLE,
  "weekday_y" DOUBLE,
  "holiday" BIGINT,
  "hour_x" DOUBLE,
  "hour_y" DOUBLE,
  "has_incorrect_data" BOOLEAN
);

Share link

Anyone who has the link will be able to view this.