Baselight

Grid Loss Prediction Dataset

A time series dataset for predicting loss in three electrical grids in Norway

@kaggle.trnderenergikraft_grid_loss_time_series_dataset

Test Backfilled Missing Data
@kaggle.trnderenergikraft_grid_loss_time_series_dataset.test_backfilled_missing_data

  • 977.24 KB
  • 4369 rows
  • 39 columns
unnamed_0

Unnamed: 0

demand

Demand

grid1_load

Grid1-load

grid1_loss

Grid1-loss

grid1_loss_prophet_daily

Grid1-loss-prophet-daily

grid1_loss_prophet_pred

Grid1-loss-prophet-pred

grid1_loss_prophet_trend

Grid1-loss-prophet-trend

grid1_loss_prophet_weekly

Grid1-loss-prophet-weekly

grid1_loss_prophet_yearly

Grid1-loss-prophet-yearly

grid1_temp

Grid1-temp

grid2_load

Grid2-load

grid2_loss

Grid2-loss

grid2_loss_prophet_daily

Grid2-loss-prophet-daily

grid2_loss_prophet_pred

Grid2-loss-prophet-pred

grid2_loss_prophet_trend

Grid2-loss-prophet-trend

grid2_loss_prophet_weekly

Grid2-loss-prophet-weekly

grid2_loss_prophet_yearly

Grid2-loss-prophet-yearly

grid2_1_temp

Grid2–1-temp

grid2_2_temp

Grid2–2-temp

grid3_load

Grid3-load

grid3_loss

Grid3-loss

grid3_loss_prophet_daily

Grid3-loss-prophet-daily

grid3_loss_prophet_pred

Grid3-loss-prophet-pred

grid3_loss_prophet_trend

Grid3-loss-prophet-trend

grid3_loss_prophet_weekly

Grid3-loss-prophet-weekly

grid3_loss_prophet_yearly

Grid3-loss-prophet-yearly

grid3_temp

Grid3-temp

season_x

Season X

season_y

Season Y

month_x

Month X

month_y

Month Y

week_x

Week X

week_y

Week Y

weekday_x

Weekday X

weekday_y

Weekday Y

holiday

Holiday

hour_x

Hour X

hour_y

Hour Y

has_incorrect_data

Has Incorrect Data

Sun Dec 01 2019 00:00:00 GMT+0000 (Coordinated Universal Time)314.3962358406407.67621.5521-3.9387625.641523.9576-2.501388.12396272.85137.2515.6814-0.76013315.332424.4363-0.640087-7.70368267.34967271.926113.29142.25285-0.02892381.975381.631630.008502680.364172272.9683-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.56806474673115590.6234898018587334-0.78183148246802991
Sun Dec 01 2019 01:00:00 GMT+0000 (Coordinated Universal Time)305.6917392306397.96620.7119-4.4194325.19223.9586-2.487138.13994273.05137.68715.6578-0.85802315.235724.4408-0.642784-7.70428267.62598271.7863814.7842.14484-0.0345441.969181.631780.007858170.364089272.9277-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.56806474673115590.6234898018587334-0.78183148246802990.96592582628906840.2588190451025207
Sun Dec 01 2019 02:00:00 GMT+0000 (Coordinated Universal Time)300.4315347665392.90420.2734-4.4922925.159423.9595-2.463758.15594273.15137.36515.5844-0.86156115.235824.4453-0.643067-7.70486266.46542271.0257313.86042.0458-0.03698421.966121.631930.00717250.364007273.12994-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.56806474673115590.6234898018587334-0.78183148246802990.86602540378443870.4999999999999999
Sun Dec 01 2019 03:00:00 GMT+0000 (Coordinated Universal Time)297.0648071672392.72620.2537-3.9178425.783223.9604-2.431328.17194273.25137.61615.5618-0.71644215.38724.4498-0.640899-7.70542265.3127270.7494813.64682.02524-0.03191021.970541.632070.006450580.363926273.51044-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.56806474673115590.6234898018587334-0.78183148246802990.70710678118654760.7071067811865475
Sun Dec 01 2019 04:00:00 GMT+0000 (Coordinated Universal Time)288.4636654639394.47820.4055-2.6019927.157323.9614-2.389998.18795273.35137.4315.4893-0.41388415.698224.4543-0.636258-7.70596265.47272271.2957213.3611.90034-0.01754981.984221.632220.005697650.363846273.78616-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.56806474673115590.6234898018587334-0.78183148246802990.50000000000000010.8660254037844386
Sun Dec 01 2019 05:00:00 GMT+0000 (Coordinated Universal Time)299.4410925248402.02721.0555-0.79492229.031423.9623-2.339968.20397273.45137.45515.6575-0.026930316.096224.4588-0.629138-7.70648265.3952272.3573613.6732.080890.002381982.003441.632370.004919270.363766273.59244-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.56806474673115590.6234898018587334-0.78183148246802990.25881904510252070.9659258262890684
Sun Dec 01 2019 06:00:00 GMT+0000 (Coordinated Universal Time)328.1615387639416.1522.3090.95378330.855523.9632-2.28158.22273.45137.42315.79850.31553116.452224.4632-0.619549-7.70699266.8636272.4455314.37191.889340.02004942.020381.632520.004121250.363688273.05902-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.56806474673115590.6234898018587334-0.78183148246802996.123233995736766e-171
Sun Dec 01 2019 07:00:00 GMT+0000 (Coordinated Universal Time)350.561177707144224.74612.0972132.082523.9642-2.214958.23604273.15138.31616.1920.50463816.657424.4677-0.607518-7.70748267.88293272.8740516.09061.862850.02841142.0281.632660.00330960.36361273.25122-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.56806474673115590.6234898018587334-0.7818314824680299-0.25881904510252060.9659258262890684
Sun Dec 01 2019 08:00:00 GMT+0000 (Coordinated Universal Time)367.2935113395451.30725.65712.4268332.503323.9651-2.140668.25209272.85151.10716.560.51792816.689124.4722-0.593089-7.70795268.3263273.317415.03192.060190.02573752.024571.632810.002490460.363534272.9602-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.56806474673115590.6234898018587334-0.7818314824680299-0.49999999999999980.8660254037844387
Sun Dec 01 2019 09:00:00 GMT+0000 (Coordinated Universal Time)376.9657496135463.18826.82282.1723432.347423.966-2.059088.26814272.55153.79816.87550.42262716.614624.4767-0.576321-7.7084268.30804272.9173316.01362.15330.01612482.014211.632960.001670070.363458272.7486-1.8369701987210294e-16-10.8660254037844384-0.50000000000000040.8229838658936564-0.56806474673115590.6234898018587334-0.7818314824680299-0.70710678118654750.7071067811865476

CREATE TABLE test_backfilled_missing_data (
  "unnamed_0" TIMESTAMP,
  "demand" DOUBLE,
  "grid1_load" DOUBLE,
  "grid1_loss" DOUBLE,
  "grid1_loss_prophet_daily" DOUBLE,
  "grid1_loss_prophet_pred" DOUBLE,
  "grid1_loss_prophet_trend" DOUBLE,
  "grid1_loss_prophet_weekly" DOUBLE,
  "grid1_loss_prophet_yearly" DOUBLE,
  "grid1_temp" DOUBLE,
  "grid2_load" DOUBLE,
  "grid2_loss" DOUBLE,
  "grid2_loss_prophet_daily" DOUBLE,
  "grid2_loss_prophet_pred" DOUBLE,
  "grid2_loss_prophet_trend" DOUBLE,
  "grid2_loss_prophet_weekly" DOUBLE,
  "grid2_loss_prophet_yearly" DOUBLE,
  "grid2_1_temp" DOUBLE,
  "grid2_2_temp" DOUBLE,
  "grid3_load" DOUBLE,
  "grid3_loss" DOUBLE,
  "grid3_loss_prophet_daily" DOUBLE,
  "grid3_loss_prophet_pred" DOUBLE,
  "grid3_loss_prophet_trend" DOUBLE,
  "grid3_loss_prophet_weekly" DOUBLE,
  "grid3_loss_prophet_yearly" DOUBLE,
  "grid3_temp" DOUBLE,
  "season_x" DOUBLE,
  "season_y" DOUBLE,
  "month_x" DOUBLE,
  "month_y" DOUBLE,
  "week_x" DOUBLE,
  "week_y" DOUBLE,
  "weekday_x" DOUBLE,
  "weekday_y" DOUBLE,
  "holiday" BIGINT,
  "hour_x" DOUBLE,
  "hour_y" DOUBLE,
  "has_incorrect_data" BOOLEAN
);

Share link

Anyone who has the link will be able to view this.