Baselight

IPL Auction Dataset 2020

Dataset of the IPL Auction 2020

@kaggle.thegreatcoder_ipl_auction_dataset

Ipl Data
@kaggle.thegreatcoder_ipl_auction_dataset.ipl_data

  • 11.63 KB
  • 62 rows
  • 13 columns
s_no

S.No

set_no

Set No

set

Set

name

Name

country

Country

playing_role

Playing Role

ipl_matches

IPL Matches

capped_uncapped_associate

Capped / Uncapped /Associate

reserve_price_in_lacs

Reserve Price(in ₹ Lacs)

ipl_2020_team

IPL 2020 Team

auctioned_price_in_lacs

Auctioned Price(in ₹ Lacs)

ipl_2019_team

IPL 2019 Team

ipl_team_s

IPL Team(s)

11BA1Chris LynnBatsman41Capped200Mumbai Indians200KKRDeccan Chargers,SRH,KKR
21BA1Eoin MorganBatsman52Capped200Kolkata Knight Riders525nanRCB, KKR, SRH, KXIP
31BA1Robin UthappaBatsman177Capped150Rajasthan Royals300KKRMI, RCB, PWI, KKR
41BA1Jason RoyBatsman8Capped150Delhi Capitals150nanGL,DD
51BA1Aaron FinchBatsman75Capped100Royal Challengers Bangalore440nanRR, DD, PWI, SRH, MI, GL, KXIP
62AL1Glenn MaxwellAll Rounder69Capped200Kings XI Punjab1075nanMI,KXIP,DD
72AL1Chris WoakesAll Rounder18Capped150Delhi Capitals150nanKKR,RCB
82AL1Pat CumminsAll Rounder16Capped200Kolkata Knight Riders1550nanMI,KKR,DD
92AL1Sam CurranAll Rounder16Capped100Chennai Super Kings550KXIPKXIP
102AL1Chris MorrisAll Rounder61Capped150Royal Challengers Bangalore1000DCCSK,RR,DC

CREATE TABLE ipl_data (
  "s_no" BIGINT,
  "set_no" VARCHAR,
  "set" VARCHAR,
  "name" VARCHAR,
  "country" VARCHAR,
  "playing_role" VARCHAR,
  "ipl_matches" DOUBLE,
  "capped_uncapped_associate" VARCHAR,
  "reserve_price_in_lacs" BIGINT,
  "ipl_2020_team" VARCHAR,
  "auctioned_price_in_lacs" BIGINT,
  "ipl_2019_team" VARCHAR,
  "ipl_team_s" VARCHAR
);

Share link

Anyone who has the link will be able to view this.