Baselight

Flight Price Prediction

Predict Fllight Price, practise feature engineering, implement ensemble models

@kaggle.shubhambathwal_flight_price_prediction

Clean Dataset
@kaggle.shubhambathwal_flight_price_prediction.clean_dataset

  • 2.7 MB
  • 300153 rows
  • 12 columns
unnamed_0

Unnamed: 0

airline

Airline

flight

Flight

source_city

Source City

departure_time

Departure Time

stops

Stops

arrival_time

Arrival Time

destination_city

Destination City

class

Class

duration

Duration

days_left

Days Left

price

Price

SpiceJetSG-8709DelhiEveningzeroNightMumbaiEconomy2.1715953
1SpiceJetSG-8157DelhiEarly_MorningzeroMorningMumbaiEconomy2.3315953
2AirAsiaI5-764DelhiEarly_MorningzeroEarly_MorningMumbaiEconomy2.1715956
3VistaraUK-995DelhiMorningzeroAfternoonMumbaiEconomy2.2515955
4VistaraUK-963DelhiMorningzeroMorningMumbaiEconomy2.3315955
5VistaraUK-945DelhiMorningzeroAfternoonMumbaiEconomy2.3315955
6VistaraUK-927DelhiMorningzeroMorningMumbaiEconomy2.0816060
7VistaraUK-951DelhiAfternoonzeroEveningMumbaiEconomy2.1716060
8GO_FIRSTG8-334DelhiEarly_MorningzeroMorningMumbaiEconomy2.1715954
9GO_FIRSTG8-336DelhiAfternoonzeroEveningMumbaiEconomy2.2515954

CREATE TABLE clean_dataset (
  "unnamed_0" BIGINT,
  "airline" VARCHAR,
  "flight" VARCHAR,
  "source_city" VARCHAR,
  "departure_time" VARCHAR,
  "stops" VARCHAR,
  "arrival_time" VARCHAR,
  "destination_city" VARCHAR,
  "class" VARCHAR,
  "duration" DOUBLE,
  "days_left" BIGINT,
  "price" BIGINT
);

Share link

Anyone who has the link will be able to view this.