Baselight

Sales Forecasting WOMart Store

Forescast Sales with Exhaustive Retail Store Data

@kaggle.shelvigarg_sales_forecasting_womart_store

Train
@kaggle.shelvigarg_sales_forecasting_womart_store.train

  • 2.17 MB
  • 188340 rows
  • 10 columns
id

ID

store_id

Store Id

store_type

Store Type

location_type

Location Type

region_code

Region Code

date

Date

holiday

Holiday

discount

Discount

n__order

#Order

sales

Sales

T10000011S1L3R1Mon Jan 01 2018 00:00:00 GMT+0000 (Coordinated Universal Time)1Yes97011.839999999999
T1000002253S4L2R1Mon Jan 01 2018 00:00:00 GMT+0000 (Coordinated Universal Time)1Yes6051789.12
T1000003252S3L2R1Mon Jan 01 2018 00:00:00 GMT+0000 (Coordinated Universal Time)1Yes4236868.2
T1000004251S2L3R1Mon Jan 01 2018 00:00:00 GMT+0000 (Coordinated Universal Time)1Yes2319715.16
T1000005250S2L3R4Mon Jan 01 2018 00:00:00 GMT+0000 (Coordinated Universal Time)1Yes6245614.52
T1000006249S1L3R2Mon Jan 01 2018 00:00:00 GMT+0000 (Coordinated Universal Time)1Yes3934211.22
T1000007248S1L1R2Mon Jan 01 2018 00:00:00 GMT+0000 (Coordinated Universal Time)1Yes4035352.66
T1000008247S1L1R3Mon Jan 01 2018 00:00:00 GMT+0000 (Coordinated Universal Time)1Yes6452650
T1000009246S3L1R3Mon Jan 01 2018 00:00:00 GMT+0000 (Coordinated Universal Time)1Yes6242633.78
T1000010254S4L1R1Mon Jan 01 2018 00:00:00 GMT+0000 (Coordinated Universal Time)1Yes8762572.8

CREATE TABLE train (
  "id" VARCHAR,
  "store_id" BIGINT,
  "store_type" VARCHAR,
  "location_type" VARCHAR,
  "region_code" VARCHAR,
  "date" TIMESTAMP,
  "holiday" BIGINT,
  "discount" VARCHAR,
  "n__order" BIGINT,
  "sales" DOUBLE
);

Share link

Anyone who has the link will be able to view this.