Baselight

Bank Churn Dataset

Bank Customer Churn Dataset

@kaggle.rangalamahesh_bank_churn

Train
@kaggle.rangalamahesh_bank_churn.train

  • 3.15 MB
  • 165034 rows
  • 14 columns
id

Id

customerid

CustomerId

surname

Surname

creditscore

CreditScore

geography

Geography

gender

Gender

age

Age

tenure

Tenure

balance

Balance

numofproducts

NumOfProducts

hascrcard

HasCrCard

isactivemember

IsActiveMember

estimatedsalary

EstimatedSalary

exited

Exited

15674932Okwudilichukwu668FranceMale33321181449.97
115749177Okwudiliolisa627FranceMale33121149503.5
215694510Hsueh678FranceMale401021184866.69
315741417Kao581FranceMale342148882.5411184560.88
415766172Chiemenam716SpainMale33521115068.83
515771669Genovese588GermanyMale364131778.5811136024.311
615692819Ch'ang593FranceFemale308144772.691129792.11
715669611Chukwuebuka678SpainMale371138476.4111106851.6
815691707Manna676FranceMale43421142917.13
915591721Cattaneo583GermanyMale40481274.33111170843.07

CREATE TABLE train (
  "id" BIGINT,
  "customerid" BIGINT,
  "surname" VARCHAR,
  "creditscore" BIGINT,
  "geography" VARCHAR,
  "gender" VARCHAR,
  "age" DOUBLE,
  "tenure" BIGINT,
  "balance" DOUBLE,
  "numofproducts" BIGINT,
  "hascrcard" DOUBLE,
  "isactivemember" DOUBLE,
  "estimatedsalary" DOUBLE,
  "exited" BIGINT
);

Share link

Anyone who has the link will be able to view this.