Baselight

Financial Risk

"Comprehensive Financial Dataset"

@kaggle.preethamgouda_financial_risk

Financial Risk Assessment
@kaggle.preethamgouda_financial_risk.financial_risk_assessment

  • 619.79 KB
  • 15000 rows
  • 20 columns
age

Age

gender

Gender

education_level

Education Level

marital_status

Marital Status

income

Income

credit_score

Credit Score

loan_amount

Loan Amount

loan_purpose

Loan Purpose

employment_status

Employment Status

years_at_current_job

Years At Current Job

payment_history

Payment History

debt_to_income_ratio

Debt-to-Income Ratio

assets_value

Assets Value

number_of_dependents

Number Of Dependents

city

City

state

State

country

Country

previous_defaults

Previous Defaults

marital_status_change

Marital Status Change

risk_rating

Risk Rating

49MalePhDDivorced7279968845713BusinessUnemployed19Poor0.1543132963127006120228Port ElizabethASCyprus22Low
57FemaleBachelor'sWidowed69033835AutoEmployed6Fair0.148919643224715955849North CatherineOHTurkmenistan32Medium
21Non-binaryMaster'sSingle5568760036623HomeEmployed8Fair0.36239801732546081807003South ScottOKLuxembourg32Medium
59MaleBachelor'sSingle2650862226541PersonalUnemployed2Excellent0.45496438073379481573193RobinhavenPRUganda42Medium
25Non-binaryBachelor'sWidowed4942776636528PersonalUnemployed10Fair0.1432424240204613287140New HeatherILNamibia31Low
30Non-binaryPhDDivorced71715613BusinessUnemployed5Fair0.29598445004308544BrianlandTNIceland31Medium
31Non-binaryMaster'sWidowed452806726553PersonalSelf-employed1Good0.3788899374153178West LindaviewMDBouvet Island (Bouvetoya)1Low
18MaleBachelor'sWidowed93678BusinessUnemployed10Poor0.39663572361646782465971MelissahavenMAHonduras11Low
32Non-binaryBachelor'sWidowed20205710AutoUnemployed4Fair0.335964977578598227599North BeverlyDCPitcairn Islands42Low
55MaleBachelor'sMarried3219060029918PersonalSelf-employed5Excellent0.48433330455936781305074DavidstadVTThailand2Low

CREATE TABLE financial_risk_assessment (
  "age" BIGINT,
  "gender" VARCHAR,
  "education_level" VARCHAR,
  "marital_status" VARCHAR,
  "income" DOUBLE,
  "credit_score" DOUBLE,
  "loan_amount" DOUBLE,
  "loan_purpose" VARCHAR,
  "employment_status" VARCHAR,
  "years_at_current_job" BIGINT,
  "payment_history" VARCHAR,
  "debt_to_income_ratio" DOUBLE,
  "assets_value" DOUBLE,
  "number_of_dependents" DOUBLE,
  "city" VARCHAR,
  "state" VARCHAR,
  "country" VARCHAR,
  "previous_defaults" DOUBLE,
  "marital_status_change" BIGINT,
  "risk_rating" VARCHAR
);

Share link

Anyone who has the link will be able to view this.