Baselight

Numpy , Pandas And Matplot Lib Practice

Dataset with Diverse Features and Variations: Exploring a Multivariate Collectio

@kaggle.prathamsaraf1389_numpy_pandas_and_matplot_lib_practise

Output
@kaggle.prathamsaraf1389_numpy_pandas_and_matplot_lib_practise.output

  • 373.83 KB
  • 5000 rows
  • 20 columns
feature1

Feature1

feature2

Feature2

feature3

Feature3

feature4

Feature4

feature5

Feature5

feature6

Feature6

feature7

Feature7

feature8

Feature8

feature9

Feature9

feature10

Feature10

feature11

Feature11

feature12

Feature12

feature13

Feature13

feature14

Feature14

feature15

Feature15

feature16

Feature16

feature17

Feature17

feature18

Feature18

feature19

Feature19

feature20

Feature20

440.7974169639365617-0.9580908251995915nan1581.49014781853523935.1661243687214832.277942259617095X1Category1Option48.82434461153091711.71113036294012YesLownan
470.0268381787452141-0.2441783090045446D2.15153478600144470.450312172608082-3.39535585844384973XCategory1Option213.355832080263156YesLowcat
640.1999900022820793-1.0147987443204454B4741.4106131130586466.786555096381965-3.0707460330717047ZCategory1Option213.44948362886787YesMediumdog
670.47412449315878740.4480401503586159B1660.63509089031383381.9371581893140288-0.2462691510015956.00497470267327620XCategory1Option27.687652301732686YesLowcat
0.59851645104474960.0878392458369933nan0.39210431940862994.0109373350479763.2150864707289492.89119899571228743ZCategory1Option311.259371037311846.807769674231409YesLowcat
0.8797531840343717-0.1474991728507531D-40.591272362164660.76300435425652343.8461804783169895-4.0289238927418732YCategory1Option311.85706998540055112.311780684856473YesMediumnan
0.63833770742539181.456409932503242nan8390.50543852460328740.6941139282867889-1.10451173069915143.9736846435247164Z1Category1Option38.48111437165067612.327733007071853YesHighcat
0.52232711695867280.1266728338825357nan18403.1563452948947875.71908169765312-1.14939101576408328.1148868466774563XCategory1Option111.94610892859883812.995709026397446YesLowdog
360.90729321562716760.0930922488520769nan3.361390117802339.777295112784721.531995548267038917XCategory3Option312.54317385026130410.40708687212008YesHighnan
0.9994264331840584-1.5527222331379755B8211.07856747021106882.4613833433792760.55302519961251073.0367197953046285YCategory1Option412.653524261526478NoHighcat

CREATE TABLE output (
  "feature1" DOUBLE,
  "feature2" DOUBLE,
  "feature3" DOUBLE,
  "feature4" VARCHAR,
  "feature5" DOUBLE,
  "feature6" DOUBLE,
  "feature7" DOUBLE,
  "feature8" DOUBLE,
  "feature9" DOUBLE,
  "feature10" DOUBLE,
  "feature11" BIGINT,
  "feature12" VARCHAR,
  "feature13" BIGINT,
  "feature14" VARCHAR,
  "feature15" VARCHAR,
  "feature16" DOUBLE,
  "feature17" DOUBLE,
  "feature18" VARCHAR,
  "feature19" VARCHAR,
  "feature20" VARCHAR
);

Share link

Anyone who has the link will be able to view this.