Baselight

Multidimensional Poverty Measures

Harmonized Dataset for Comparisons Over Time

@kaggle.mitchellreynolds_multidimensional_poverty_measures

Subnational Mpi Across Time
@kaggle.mitchellreynolds_multidimensional_poverty_measures.subnational_mpi_across_time

  • 78.69 KB
  • 515 rows
  • 21 columns
unnamed_0

Unnamed: 0

country

Country

region

Region

year1

Year1

year2

Year2

mpi_year1

Mpi Year1

mpi_year2

Mpi Year2

mpi_annualized_change

Mpi Annualized Change

headcount_ratio_year1

Headcount Ratio Year1

headcount_ratio_year2

Headcount Ratio Year2

headcount_ratio_annualized_change

Headcount Ratio Annualized Change

poverty_intensity_year1

Poverty Intensity Year1

poverty_intensity_year2

Poverty Intensity Year2

poverty_intensity_annualized_change

Poverty Intensity Annualized Change

mpi_stat_sig

Mpi Stat Sig

headcount_ratio_stat_sig

Headcount Ratio Stat Sig

poverty_intensity_stat_sig

Poverty Intensity Stat Sig

total_population_year1

Total Population Year1

total_population_year2

Total Population Year2

nb_poor_year1

Nb Poor Year1

nb_poor_year2

Nb Poor Year2

BangladeshBarisal200420070.3940525352950.328580826521-0.021823903545770.692253112863.4114086628-2.4269483089455.741965770751.817303896-1.30822062492*****8866114922511062676555849772
1BangladeshChittagong200420070.3773301541810.314115524292-0.021071543917167.589497566260.7776641846-2.2706112861655.82674145751.6827225685-1.38133955002******27390076290859801851281417677779
2BangladeshDhaka200420070.3472436368470.301106899977-0.015378911979564.774519205156.8391978741-2.6451072692953.608059883152.9752194881-0.210946798325****nan44005511448335002850435925483001
3BangladeshKhulna200420070.3017961680890.260602623224-0.013731181621659.546703100253.8750112057-1.8905639648450.68225860648.3717113733-0.77018237114*****166684231754604899254979452935
4BangladeshRajshahi200420070.3738273084160.292320132256-0.027169058099470.319515466758.3956182003-3.974632501653.161245584550.0585794449-1.03422212601*********34059859346727422395072820247362
5BangladeshSylhet200420070.4459013640880.396526128054-0.016458412632374.597197771170.0264692307-1.5235762596159.774547815356.6251754761-1.04979085922nannan**102450591109368676425277768516
6BangladeshBarisal200720110.3285808265210.272092014551-0.014122202992463.411408662855.5073261261-1.9760205745751.81730389649.019113183-0.69954764843******9225110882762658497724899979
7BangladeshChittagong200720110.3141155242920.252499938011-0.015403896570260.777664184650.6713330746-2.526582717951.682722568549.8309224844-0.462950021029*****nan29085980298219491767777915111179
8BangladeshDhaka200720110.3011068999770.234257102013-0.01671244949156.839197874146.2099015713-2.657324075752.975219488150.6941318512-0.570271909237********44833500483374722548300022336698
9BangladeshKhulna200720110.2606026232240.188760355115-0.017960567027353.875011205742.1150177717-2.9399983882948.371711373344.8202013969-0.887877464294*********175460481714853194529357222106

CREATE TABLE subnational_mpi_across_time (
  "unnamed_0" BIGINT,
  "country" VARCHAR,
  "region" VARCHAR,
  "year1" BIGINT,
  "year2" BIGINT,
  "mpi_year1" DOUBLE,
  "mpi_year2" DOUBLE,
  "mpi_annualized_change" DOUBLE,
  "headcount_ratio_year1" DOUBLE,
  "headcount_ratio_year2" DOUBLE,
  "headcount_ratio_annualized_change" DOUBLE,
  "poverty_intensity_year1" DOUBLE,
  "poverty_intensity_year2" DOUBLE,
  "poverty_intensity_annualized_change" DOUBLE,
  "mpi_stat_sig" VARCHAR,
  "headcount_ratio_stat_sig" VARCHAR,
  "poverty_intensity_stat_sig" VARCHAR,
  "total_population_year1" BIGINT,
  "total_population_year2" BIGINT,
  "nb_poor_year1" BIGINT,
  "nb_poor_year2" BIGINT
);

Share link

Anyone who has the link will be able to view this.