Baselight

Python Data Visualization Essentials Guide

For Exercises in Data Visualization

@kaggle.kalilurrahman_python_data_visualization_essentials_guide

Worldcities
@kaggle.kalilurrahman_python_data_visualization_essentials_guide.worldcities

  • 1.42 MB
  • 26569 rows
  • 11 columns
city

City

city_ascii

City Ascii

lat

Lat

lng

Lng

country

Country

iso2

Iso2

iso3

Iso3

admin_name

Admin Name

capital

Capital

population

Population

id

Id

TokyoTokyo35.6897139.6922JapanJPJPNTōkyōprimary379770001392685764
JakartaJakarta-6.2146106.8451IndonesiaIDIDNJakartaprimary345400001360771077
DelhiDelhi28.6677.23IndiaININDDelhiadmin296170001356872604
MumbaiMumbai18.966772.8333IndiaININDMahārāshtraadmin233550001356226629
ManilaManila14.5958120.9772PhilippinesPHPHLManilaprimary230880001608618140
ShanghaiShanghai31.1667121.4667ChinaCNCHNShanghaiadmin221200001156073548
São PauloSao Paulo-23.5504-46.6339BrazilBRBRASão Pauloadmin220460001076532519
SeoulSeoul37.5833127Korea, SouthKRKORSeoulprimary217940001410836482
Mexico CityMexico City19.4333-99.1333MexicoMXMEXCiudad de Méxicoprimary209960001484247881
GuangzhouGuangzhou23.1288113.259ChinaCNCHNGuangdongadmin209020001156237133

CREATE TABLE worldcities (
  "city" VARCHAR,
  "city_ascii" VARCHAR,
  "lat" DOUBLE,
  "lng" DOUBLE,
  "country" VARCHAR,
  "iso2" VARCHAR,
  "iso3" VARCHAR,
  "admin_name" VARCHAR,
  "capital" VARCHAR,
  "population" DOUBLE,
  "id" BIGINT
);

Share link

Anyone who has the link will be able to view this.