Baselight

Deberta-Finetuning-Results

F1 Scores of different configurations of Deberta

@kaggle.jarvisai7_deberta_finetuning_results

Deberta Finetuning
@kaggle.jarvisai7_deberta_finetuning_results.deberta_finetuning

  • 16 KB
  • 16 rows
  • 20 columns
unnamed_0

Unnamed: 0

accumulation

ACCUMULATION

batch

BATCH

epochs

EPOCHS

threshold

THRESHOLD

effective_batch

Effective Batch

f1_fold_0

F1 Fold 0

f1_fold_1

F1 Fold 1

f1_fold_2

F1 Fold 2

f1_fold_3

F1 Fold 3

mean_f1

Mean F1

precision_fold_0

Precision Fold 0

precision_fold_1

Precision Fold 1

precision_fold_2

Precision Fold 2

precision_fold_3

Precision Fold 3

recall_fold_0

Recall Fold 0

recall_fold_1

Recall Fold 1

recall_fold_2

Recall Fold 2

recall_fold_3

Recall Fold 3

std_f1

Std F1

1430.9940.96391164575339640.97434374628815780.96562141889780180.95725004362240440.965281713640440.67389255419415650.69112814895947430.66449207828518180.63746223564954680.980795610425240.99058084772370480.9834482758620690.9768518518518520.0060955033562434
11630.9960.9594838709677420.96980461811722920.96386800334168770.94871644933044840.96046823543927680.62173913043478260.65284974093264250.6913339824732230.69256381798002220.980795610425240.9890109890109890.97931034482758620.96296296296296280.0077103812075003
21420.9940.95949354058366370.9643192488262910.96205707118218870.94727039925503440.95828506496179440.5955149501661130.56681614349775790.70168483647175420.63747454175152750.98353909465020560.99215070643642080.9765517241379310.96604938271604920.00658450225525
32420.9980.96028061487671520.95474213542275770.95986726122575960.95558265110607920.9576181656578280.61670973298880270.53355989804587930.61326442721791560.61876832844574780.98216735253772280.98587127158555720.98206896551724140.9768518518518520.0024780000060665
41430.9540.96718317942296660.96687160508565640.96538703587161720.9232671809669630.95567725033680080.75690021231422510.75241545893719810.7507953340402970.77208706786171580.97805212620027440.9780219780219780.9765517241379310.93055555555555560.0187242657671063
51620.9960.9596324592194920.95677570093457940.95959964551947040.94097827349831520.95424651979296440.62336530078465560.52719665271966530.66918714555765590.61439842209072980.980795610425240.9890109890109890.9765517241379310.96141975308641980.0077476999092081
62420.9580.94867790963980840.95927388459951680.9619077436860780.94398971000935440.95346231198368960.71023302938196550.60076775431861810.68238691049085660.68694690265486720.961591220850480.98273155416012560.97793103448275860.95833333333333340.0073776755631609
72430.980.95148473442074440.96578538102643840.9609912322150470.93315319548872180.9528536357877380.77519379844961240.78310214375788150.76355748373101950.7415048543689320.96021947873799720.97488226059654640.97103448275862080.94290123456790120.0124843076445999
81630.9560.96798414850349360.9725415450592650.95098656591099920.91885216982241560.95259110732404320.74921301154249740.72685185185185190.7486573576799140.74565756823821340.97942386831275720.98587127158555720.96137931034482760.92746913580246910.0210704540735607
91420.9540.95935467083008060.96444418150624140.96271044212513760.9196386672923510.95153699043845270.71616161616161610.64110429447852760.74946921443736720.71108490566037740.97256515775034280.98430141287284160.9737931034482760.93055555555555560.018507165842545

CREATE TABLE deberta_finetuning (
  "unnamed_0" BIGINT,
  "accumulation" BIGINT,
  "batch" BIGINT,
  "epochs" BIGINT,
  "threshold" DOUBLE,
  "effective_batch" BIGINT,
  "f1_fold_0" DOUBLE,
  "f1_fold_1" DOUBLE,
  "f1_fold_2" DOUBLE,
  "f1_fold_3" DOUBLE,
  "mean_f1" DOUBLE,
  "precision_fold_0" DOUBLE,
  "precision_fold_1" DOUBLE,
  "precision_fold_2" DOUBLE,
  "precision_fold_3" DOUBLE,
  "recall_fold_0" DOUBLE,
  "recall_fold_1" DOUBLE,
  "recall_fold_2" DOUBLE,
  "recall_fold_3" DOUBLE,
  "std_f1" DOUBLE
);

Share link

Anyone who has the link will be able to view this.