Baselight

Predict Droughts Using Weather & Soil Data

Predicting continental US drought levels using meteorological & soil data.

@kaggle.cdminix_us_drought_meteorological_data

Soil Data
@kaggle.cdminix_us_drought_meteorological_data.soil_data

  • 423.1 KB
  • 3109 rows
  • 32 columns
fips

Fips

lat

Lat

lon

Lon

elevation

Elevation

slope1

Slope1

slope2

Slope2

slope3

Slope3

slope4

Slope4

slope5

Slope5

slope6

Slope6

slope7

Slope7

slope8

Slope8

aspectn

AspectN

aspecte

AspectE

aspects

AspectS

aspectw

AspectW

aspectunknown

AspectUnknown

wat_land

WAT LAND

nvg_land

NVG LAND

urb_land

URB LAND

grs_land

GRS LAND

for_land

FOR LAND

cultrf_land

CULTRF LAND

cultir_land

CULTIR LAND

cult_land

CULT LAND

sq1

SQ1

sq2

SQ2

sq3

SQ3

sq4

SQ4

sq5

SQ5

sq6

SQ6

sq7

SQ7

100132.536382-86.64449630.04190.27880.29840.24970.11420.0170.10330.18590.20030.18980.32070.99739998579025327.94049835205080.288899987936022.7502737045288110.714702606201256.29341125488281.0148110389709557.30822372436521111112
100531.87067-85.4054561460.01580.18680.54410.24240.01060.00030.14150.23790.21830.19970.20260.4145999848842622.2256016731262222.952838897705172.57880401611331.8281589746475274.40695953369143211111
100330.659218-87.746067520.07460.4370.44150.04690.11680.13860.10480.12820.51163.500999927520754.972455501556428.685991287231459.84363937377932.9969139099121162.84055328369143212111
100733.015893-87.127148930.01440.16170.37140.34930.08980.01340.19710.18850.22790.21040.17610.2282999902963648.6746644973754989.17211151123051.916593432426450.00833049882203341.924923896789553211111
100933.977448-86.5672461980.0050.08720.27990.35760.14770.10370.01890.25690.15030.20280.29780.09221.003700017929088.6068563461303788.47004699707031.891909360885620.02748766914010051.919396996498113211111
101132.101759-85.7172611520.02150.21570.52820.22530.00920.00010.16760.20070.1950.19950.23720.3458000123500828.837582588195890.15952301025390.6103653311729430.0467292889952660.6570945978164673211111
101331.751667-86.6819691030.02990.29870.54730.12070.00310.00030.12960.19920.15480.18780.32860.336100012063988.2311115264892685.97369384765635.371551036834720.0875438600778585.45909500122073212111
101533.771706-85.8225132690.00510.07930.25250.28750.16580.19250.01730.27870.1410.16770.32820.08445.388999938964847.8974685668945345.259788513183640.91453933715820.53920358419418341.4537429809573211111
101732.917943-85.3918122390.00810.12860.48320.35020.02830.00160.17890.2690.20290.21250.13670.3476999998092658.8371391296386790.15981292724610.6198372840881350.03551056981086730.655347824096683211111
101934.069515-85.6542421960.0170.18920.30630.2250.11550.13240.01390.00070.23010.24350.14830.17190.206211.320700645446813.744954109191924.079757690429750.09000396728520.76458299160003750.85458755493163211111

CREATE TABLE soil_data (
  "fips" BIGINT,
  "lat" DOUBLE,
  "lon" DOUBLE,
  "elevation" BIGINT,
  "slope1" DOUBLE,
  "slope2" DOUBLE,
  "slope3" DOUBLE,
  "slope4" DOUBLE,
  "slope5" DOUBLE,
  "slope6" DOUBLE,
  "slope7" DOUBLE,
  "slope8" DOUBLE,
  "aspectn" DOUBLE,
  "aspecte" DOUBLE,
  "aspects" DOUBLE,
  "aspectw" DOUBLE,
  "aspectunknown" DOUBLE,
  "wat_land" DOUBLE,
  "nvg_land" DOUBLE,
  "urb_land" DOUBLE,
  "grs_land" DOUBLE,
  "for_land" DOUBLE,
  "cultrf_land" DOUBLE,
  "cultir_land" DOUBLE,
  "cult_land" DOUBLE,
  "sq1" BIGINT,
  "sq2" BIGINT,
  "sq3" BIGINT,
  "sq4" BIGINT,
  "sq5" BIGINT,
  "sq6" BIGINT,
  "sq7" BIGINT
);

Share link

Anyone who has the link will be able to view this.