Baselight

INVESTIGATIVE WILDFIRE DATA FOR TURKEY/ NASA

INVESTIGATIVE WILDFIRE CSV DATA

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa

Loading...
Loading...

About this Dataset

INVESTIGATIVE WILDFIRE DATA FOR TURKEY/ NASA

INVESTIGATIVE WILDFIRE DATA FOR TURKEY/ NASA

BE CAREFUL OF THE FILE NAMES.

IT CONTAINS THE DATA NEEDED TO RESEARCH LATEST FOREST FIRES IN TURKEY.

PAY ATTENTION TO THE DATE INTERVALS. THESE ARE 7-11 DAILY DATA OF LAST TIMES.

  • fire _ nrt _ M _ C61 _ 212465 _ all _ countries.csv

This file is important for all countries becuase it contains fire data of last 11 days for all around the world

Content

Data on recent forest fires in Turkey, published with permission from NASA Portal.
The data was created based on the hotspots and obtained from the satellite.

3 SEPARATE SATELLITE DATA:

  • MODIS C6.1
  • SUOMI VIIRS C2
  • J1 VIIRS C1

GENERAL ATTRIBUTES

  • Latitude
    Center of nominal 375 m fire pixel

  • Longitude
    Center of nominal 375 m fire pixel

  • Bright_ti4
    (Brightness temperature I-4)
    VIIRS I-4: channel brightness temperature of the fire pixel measured in Kelvin.

  • Scan
    (Along Scan pixel size)
    The algorithm produces approximately 375 m pixels at nadir. Scan and track reflect actual pixel size.

  • Track
    (Along Track pixel size)
    The algorithm produces approximately 375 m pixels at nadir. Scan and track reflect actual pixel size.

  • Acq_Date
    (Acquisition Date)
    Date of VIIRS acquisition.

  • Acq_Time
    (Acquisition Time)
    Time of acquisition/overpass of the satellite (in UTC).

  • Satellite
    N Suomi National Polar-orbiting Partnership (Suomi NPP)

  • Confidence
    This value is based on a collection of intermediate algorithm quantities used in the detection process. It is intended to help users gauge the quality of individual hotspot/fire pixels. Confidence values are set to low, nominal and high. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.

Please note:
  • Low confidence nighttime pixels occur only over the geographic area extending from 11° E to 110° W and 7° N to 55° S. This area describes the region of influence of the South Atlantic Magnetic Anomaly which can cause spurious brightness temperatures in the mid-infrared channel I4 leading to potential false positive alarms. These have been removed from the NRT data distributed by FIRMS.

  • Version
    Version identifies the collection (e.g. VIIRS Collection 1) and source of data processing: Near Real-Time (NRT suffix added to collection) or Standard Processing (collection only).

"1.0NRT" - Collection 1 NRT processing.

"1.0" - Collection 1 Standard processing.

  • Bright_ti5
    (Brightness temperature I-5)
    I-5 Channel brightness temperature of the fire pixel measured in Kelvin.

  • FRP
    (Fire Radiative Power)
    FRP depicts the pixel-integrated fire radiative power in MW (megawatts). Given the unique spatial and spectral resolution of the data, the VIIRS 375 m fire detection algorithm was customized and tuned in order to optimize its response over small fires while balancing the occurrence of false alarms. Frequent saturation of the mid-infrared I4 channel (3.55-3.93 µm) driving the detection of active fires requires additional tests and procedures to avoid pixel classification errors. As a result, sub-pixel fire characterization (e.g., fire radiative power [FRP] retrieval) is only viable across small and/or low-intensity fires. Systematic FRP retrievals are based on a hybrid approach combining 375 and 750 m data. In fact, starting in 2015 the algorithm incorporated additional VIIRS channel M13 (3.973-4.128 µm) 750 m data in both aggregated and unaggregated format.

Satellite measurements of fire radiative power (FRP) are increasingly used to estimate the contribution of biomass burning to local and global carbon budgets. Without an associated uncertainty, however, FRP-based biomass burning estimates cannot be confidently compared across space and time, or against estimates derived from alternative methodologies. Differences in the per-pixel FRP measured near-simultaneously in consecutive MODIS scans are approximately normally distributed with a standard deviation (ση) of 26.6%. Simulations demonstrate that this uncertainty decreases to less than ~5% (at ±1 ση) for aggregations larger than ~50 MODIS active fire pixels. Although FRP uncertainties limit the confidence in flux estimates on a per-pixel basis, the sensitivity of biomass burning estimates to FRP uncertainties can be mitigated by conducting inventories at coarser spatiotemporal resolutions.

http://cedadocs.ceda.ac.uk/770/1/SEVIRI_FRP_documentdesc.pdf

  • Type
    (Inferred hot spot type)
    0 = presumed vegetation fire

1 = active volcano

2 = other static land source

3 = offshore detection (includes all detections over water)

  • DayNight
    (Day or Night)

D= Daytime fire

N= Nighttime fire

Tables

Modis 2019 Palestine

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_palestine
  • 14.47 kB
  • 87 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_palestine (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Panama

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_panama
  • 80.39 kB
  • 2,989 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_panama (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Papua New Guinea

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_papua_new_guinea
  • 144.61 kB
  • 6,170 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_papua_new_guinea (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Paraguay

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_paraguay
  • 811.16 kB
  • 42,319 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_paraguay (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Peru

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_peru
  • 387.23 kB
  • 17,238 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_peru (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Philippines

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_philippines
  • 162.32 kB
  • 6,886 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_philippines (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Poland

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_poland
  • 33.18 kB
  • 703 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_poland (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Portugal

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_portugal
  • 47.64 kB
  • 1,269 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_portugal (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Puerto Rico

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_puerto_rico
  • 15.03 kB
  • 100 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_puerto_rico (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Qatar

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_qatar
  • 24.65 kB
  • 432 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_qatar (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Republic Of Congo

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_republic_of_congo
  • 434.56 kB
  • 21,345 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_republic_of_congo (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Republic Of Korea

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_republic_of_korea
  • 38.95 kB
  • 1,003 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_republic_of_korea (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Reunion

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_reunion
  • 21.26 kB
  • 304 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_reunion (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Romania

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_romania
  • 143.03 kB
  • 6,049 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_romania (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Russian Federation

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_russian_federation
  • 6.99 MB
  • 367,243 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_russian_federation (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Rwanda

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_rwanda
  • 19.4 kB
  • 228 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_rwanda (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Saint Helena

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_saint_helena
  • 10.43 kB
  • 1 row
  • 15 columns
Loading...
CREATE TABLE modis_2019_saint_helena (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" BIGINT,
  "track" BIGINT,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Saint Kitts And Nevis

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_saint_kitts_and_nevis
  • 10.82 kB
  • 7 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_saint_kitts_and_nevis (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Saint Lucia

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_saint_lucia
  • 10.51 kB
  • 2 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_saint_lucia (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" BIGINT,
  "track" BIGINT,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Saint Vincent And The Grenadines

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_saint_vincent_and_the_grenadines
  • 10.42 kB
  • 1 row
  • 15 columns
Loading...
CREATE TABLE modis_2019_saint_vincent_and_the_grenadines (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" BIGINT,
  "track" BIGINT,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" BIGINT,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Samoa

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_samoa
  • 11.9 kB
  • 29 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_samoa (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Sao Tome And Principe

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_sao_tome_and_principe
  • 10.95 kB
  • 10 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_sao_tome_and_principe (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Saudi Arabia

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_saudi_arabia
  • 84.66 kB
  • 3,011 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_saudi_arabia (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Senegal

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_senegal
  • 342.99 kB
  • 17,286 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_senegal (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Modis 2019 Serbia

@kaggle.brsdincer_investigative_wildfire_data_for_turkey_nasa.modis_2019_serbia
  • 91.03 kB
  • 3,685 rows
  • 15 columns
Loading...
CREATE TABLE modis_2019_serbia (
  "latitude" DOUBLE,
  "longitude" DOUBLE,
  "brightness" DOUBLE,
  "scan" DOUBLE,
  "track" DOUBLE,
  "acq_date" TIMESTAMP,
  "acq_time" BIGINT,
  "satellite" VARCHAR,
  "instrument" VARCHAR,
  "confidence" BIGINT,
  "version" DOUBLE,
  "bright_t31" DOUBLE,
  "frp" DOUBLE,
  "daynight" VARCHAR,
  "type" BIGINT
);

Share link

Anyone who has the link will be able to view this.