Comprehensive Mental Health Insights: A Diverse Dataset of 1000 Individuals Across Professions, Countries, and Lifestyles
This dataset provides a rich collection of anonymized mental health data for 1000 individuals, representing a wide range of ages, genders, occupations, and countries. It aims to shed light on the various factors affecting mental health, offering valuable insights into stress levels, sleep patterns, work-life balance, and physical activity.
Key Features:
Demographics: The dataset includes individuals from various countries such as the USA, India, the UK, Canada, and Australia. Each entry captures key demographic information such as age, gender, and occupation (e.g., IT, Healthcare, Education, Engineering).
Mental Health Conditions: The dataset contains data on whether the individuals have reported any mental health issues (Yes/No), along with the severity of these conditions categorized into Low, Medium, or High.
Consultation History: For individuals with mental health conditions, the dataset notes whether they have consulted a mental health professional.
Stress Levels: Each individual’s stress level is classified as Low, Medium, or High, providing insights into how different factors such as work hours or sleep may correlate with mental well-being.
Lifestyle Factors: The dataset includes information on sleep duration, work hours per week, and weekly physical activity hours, offering a detailed picture of how lifestyle factors contribute to mental health.
This dataset can be used for research, analysis, or machine learning models to predict mental health trends, uncover correlations between work-life balance and mental well-being, and explore the impact of stress and physical activity on mental health.