Baselight

Unemployment By Sex And Age - Quarterly Data

Eurostat code: une_rt_q · (2003-Q1 - 2024-Q4)

@eurostat.une_rt_q

Unemployment By Sex And Age - Quarterly Data - Raw
@eurostat.une_rt_q.raw

This table contains the original data as downloaded from the Eurostat API, with labels mapped where available.

  • 983.27 KB
  • 6993 rows
  • 94 columns
freq

Freq

s_adj

S Adj

age

Age

unit

Unit

sex

Sex

geo

Geo

n_2003_q1

2003-Q1

n_2003_q2

2003-Q2

n_2003_q3

2003-Q3

n_2003_q4

2003-Q4

n_2004_q1

2004-Q1

n_2004_q2

2004-Q2

n_2004_q3

2004-Q3

n_2004_q4

2004-Q4

n_2005_q1

2005-Q1

n_2005_q2

2005-Q2

n_2005_q3

2005-Q3

n_2005_q4

2005-Q4

n_2006_q1

2006-Q1

n_2006_q2

2006-Q2

n_2006_q3

2006-Q3

n_2006_q4

2006-Q4

n_2007_q1

2007-Q1

n_2007_q2

2007-Q2

n_2007_q3

2007-Q3

n_2007_q4

2007-Q4

n_2008_q1

2008-Q1

n_2008_q2

2008-Q2

n_2008_q3

2008-Q3

n_2008_q4

2008-Q4

n_2009_q1

2009-Q1

n_2009_q2

2009-Q2

n_2009_q3

2009-Q3

n_2009_q4

2009-Q4

n_2010_q1

2010-Q1

n_2010_q2

2010-Q2

n_2010_q3

2010-Q3

n_2010_q4

2010-Q4

n_2011_q1

2011-Q1

n_2011_q2

2011-Q2

n_2011_q3

2011-Q3

n_2011_q4

2011-Q4

n_2012_q1

2012-Q1

n_2012_q2

2012-Q2

n_2012_q3

2012-Q3

n_2012_q4

2012-Q4

n_2013_q1

2013-Q1

n_2013_q2

2013-Q2

n_2013_q3

2013-Q3

n_2013_q4

2013-Q4

n_2014_q1

2014-Q1

n_2014_q2

2014-Q2

n_2014_q3

2014-Q3

n_2014_q4

2014-Q4

n_2015_q1

2015-Q1

n_2015_q2

2015-Q2

n_2015_q3

2015-Q3

n_2015_q4

2015-Q4

n_2016_q1

2016-Q1

n_2016_q2

2016-Q2

n_2016_q3

2016-Q3

n_2016_q4

2016-Q4

n_2017_q1

2017-Q1

n_2017_q2

2017-Q2

n_2017_q3

2017-Q3

n_2017_q4

2017-Q4

n_2018_q1

2018-Q1

n_2018_q2

2018-Q2

n_2018_q3

2018-Q3

n_2018_q4

2018-Q4

n_2019_q1

2019-Q1

n_2019_q2

2019-Q2

n_2019_q3

2019-Q3

n_2019_q4

2019-Q4

n_2020_q1

2020-Q1

n_2020_q2

2020-Q2

n_2020_q3

2020-Q3

n_2020_q4

2020-Q4

n_2021_q1

2021-Q1

n_2021_q2

2021-Q2

n_2021_q3

2021-Q3

n_2021_q4

2021-Q4

n_2022_q1

2022-Q1

n_2022_q2

2022-Q2

n_2022_q3

2022-Q3

n_2022_q4

2022-Q4

n_2023_q1

2023-Q1

n_2023_q2

2023-Q2

n_2023_q3

2023-Q3

n_2023_q4

2023-Q4

n_2024_q1

2024-Q1

n_2024_q2

2024-Q2

n_2024_q3

2024-Q3

n_2024_q4

2024-Q4

QuarterlyUnadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data)From 15 to 24 yearsPercentage of population in the labour forceFemalesAustria8.510.412.610.49.99.210.89.110.598.210.410.69.810.37.89.49.910.611.712.89.59.59.88.210.111.611.711.49.4129.78.88.110.499.610.310.38.86.78.69.77.58.812.811.39.712.611.710.710.17.3911.110.39.510.411.710.910.18.610.910.5
QuarterlyUnadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data)From 15 to 24 yearsPercentage of population in the labour forceFemalesBosnia and Herzegovina4846.945.337.84241.544.240.737.135.130.830.235.836.333.5
QuarterlyUnadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data)From 15 to 24 yearsPercentage of population in the labour forceFemalesBelgium22.520.923.523.225.719.923.120.71816.924.515.718.716.320.819.821.622.623.722.126.62419.82020.416.321.923.119.316.521.21619.320.816.916.615.417.816.611.912.111.812.512.913.115.518.514.817.821179.313.614.716.213129.819.714.812.312.519.414.1
QuarterlyUnadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data)From 15 to 24 yearsPercentage of population in the labour forceFemalesBulgaria14.315.819.921.5232325.5262827.226.830.533.52926.233.933.231.126.730.332.427.825.627.527.927.223.428.622.116.922.123.218.216.215.21616.616.815.813.613.413.210.324.616.116.615.915.91114.714.9
QuarterlyUnadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data)From 15 to 24 yearsPercentage of population in the labour forceFemalesSwitzerland910.67.89.96.38.15.19.68.786.39.18.68.18.410.77.88.47.612.16.36.4610.810.36.47.111.68.477.210.57.38.868.46.46410.686.66.612.16.68.77.610.26.766.49.35.66.96.39.87.47.86.710.88.5
QuarterlyUnadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data)From 15 to 24 yearsPercentage of population in the labour forceFemalesCyprus10.713.115.616.819.91912.916.719.419.122.425.525.123.427.130.735.839.736.635.239.136.831.231.532.728.735.427.528.127.934.83625.624.42219.921.712.714.31620.810.414.214.610.613.810.711.713.419.214.717.21618.32017.413.613.516.315.214.61613.410.3
QuarterlyUnadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data)From 15 to 24 yearsPercentage of population in the labour forceFemalesCzechia13.514.517.920.718.717.719.51817.518.917.917.618.118.419.420.1181920.620.217.418.21814.913.513.91614.310.81013.211.59.810.38.76.26.58.47.76.14.66.276.35.38.211.711.412.97.79.16.87.17.5988.19.99.57.688.811.511.1
QuarterlyUnadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data)From 15 to 24 yearsPercentage of population in the labour forceFemalesGermany9.610.712.39.5109.110.48.38.97.99.67.17.47.29.777.27.28.87.27.47.29.16.67.46.18.466.96.47.45.66.36.26.65.85.95.664.655.25.94.46.47.78.17.28.16.674.64.65.36.85.35.15.264.65.55.96.65.2
QuarterlyUnadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data)From 15 to 24 yearsPercentage of population in the labour forceFemalesDenmark10.111.712.611.912.711.815.412.813.71316.214.715.615.513.814.51411.713.913.713.812.813.311.611.29.813.110.510.39.613.110.413.211.21310.110.76.911.4810.97.611.19.28.710.211.911.815.38.910.29.710.28.412.510.810.78.1121413.412.515.515.4
QuarterlyUnadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data)From 15 to 24 yearsPercentage of population in the labour forceFemalesEuro area – 20 countries (from 2023)19.820.321.32121.421.821.822.122.521.521.922.323.623.224.525.225.324.62525.425.523.524.123.923.522.322.922.121.921.221.520.82019.118.718.518.217.116.716.916.915.715.916.216.718.120.118.119.31816.7141414.315.513.713.613.714.613.813.814.215.213.7

CREATE TABLE raw (
  "freq" VARCHAR,
  "s_adj" VARCHAR,
  "age" VARCHAR,
  "unit" VARCHAR,
  "sex" VARCHAR,
  "geo" VARCHAR,
  "n_2003_q1" DOUBLE,
  "n_2003_q2" DOUBLE,
  "n_2003_q3" DOUBLE,
  "n_2003_q4" DOUBLE,
  "n_2004_q1" DOUBLE,
  "n_2004_q2" DOUBLE,
  "n_2004_q3" DOUBLE,
  "n_2004_q4" DOUBLE,
  "n_2005_q1" DOUBLE,
  "n_2005_q2" DOUBLE,
  "n_2005_q3" DOUBLE,
  "n_2005_q4" DOUBLE,
  "n_2006_q1" DOUBLE,
  "n_2006_q2" DOUBLE,
  "n_2006_q3" DOUBLE,
  "n_2006_q4" DOUBLE,
  "n_2007_q1" DOUBLE,
  "n_2007_q2" DOUBLE,
  "n_2007_q3" DOUBLE,
  "n_2007_q4" DOUBLE,
  "n_2008_q1" DOUBLE,
  "n_2008_q2" DOUBLE,
  "n_2008_q3" DOUBLE,
  "n_2008_q4" DOUBLE,
  "n_2009_q1" DOUBLE,
  "n_2009_q2" DOUBLE,
  "n_2009_q3" DOUBLE,
  "n_2009_q4" DOUBLE,
  "n_2010_q1" DOUBLE,
  "n_2010_q2" DOUBLE,
  "n_2010_q3" DOUBLE,
  "n_2010_q4" DOUBLE,
  "n_2011_q1" DOUBLE,
  "n_2011_q2" DOUBLE,
  "n_2011_q3" DOUBLE,
  "n_2011_q4" DOUBLE,
  "n_2012_q1" DOUBLE,
  "n_2012_q2" DOUBLE,
  "n_2012_q3" DOUBLE,
  "n_2012_q4" DOUBLE,
  "n_2013_q1" DOUBLE,
  "n_2013_q2" DOUBLE,
  "n_2013_q3" DOUBLE,
  "n_2013_q4" DOUBLE,
  "n_2014_q1" DOUBLE,
  "n_2014_q2" DOUBLE,
  "n_2014_q3" DOUBLE,
  "n_2014_q4" DOUBLE,
  "n_2015_q1" DOUBLE,
  "n_2015_q2" DOUBLE,
  "n_2015_q3" DOUBLE,
  "n_2015_q4" DOUBLE,
  "n_2016_q1" DOUBLE,
  "n_2016_q2" DOUBLE,
  "n_2016_q3" DOUBLE,
  "n_2016_q4" DOUBLE,
  "n_2017_q1" DOUBLE,
  "n_2017_q2" DOUBLE,
  "n_2017_q3" DOUBLE,
  "n_2017_q4" DOUBLE,
  "n_2018_q1" DOUBLE,
  "n_2018_q2" DOUBLE,
  "n_2018_q3" DOUBLE,
  "n_2018_q4" DOUBLE,
  "n_2019_q1" DOUBLE,
  "n_2019_q2" DOUBLE,
  "n_2019_q3" DOUBLE,
  "n_2019_q4" DOUBLE,
  "n_2020_q1" DOUBLE,
  "n_2020_q2" DOUBLE,
  "n_2020_q3" DOUBLE,
  "n_2020_q4" DOUBLE,
  "n_2021_q1" DOUBLE,
  "n_2021_q2" DOUBLE,
  "n_2021_q3" DOUBLE,
  "n_2021_q4" DOUBLE,
  "n_2022_q1" DOUBLE,
  "n_2022_q2" DOUBLE,
  "n_2022_q3" DOUBLE,
  "n_2022_q4" DOUBLE,
  "n_2023_q1" DOUBLE,
  "n_2023_q2" DOUBLE,
  "n_2023_q3" DOUBLE,
  "n_2023_q4" DOUBLE,
  "n_2024_q1" DOUBLE,
  "n_2024_q2" DOUBLE,
  "n_2024_q3" DOUBLE,
  "n_2024_q4" DOUBLE
);

Share link

Anyone who has the link will be able to view this.