Baselight

Predict Demand

Demand Prediction Problem

@kaggle.veeralakrishna_predict_demand

Train
@kaggle.veeralakrishna_predict_demand.train

  • 104.07 KB
  • 7560 rows
  • 12 columns
id

Id

date

Date

city

City

lat

Lat

long

Long

pop

Pop

shop

Shop

brand

Brand

container

Container

capacity

Capacity

price

Price

quantity

Quantity

31/01/12Athens37.9794523.71622672130shop_1kinder-colaglass500ml0.9613280
131/01/12Athens37.9794523.71622672130shop_1kinder-colaplastic1.5lt2.866727
231/01/12Athens37.9794523.71622672130shop_1kinder-colacan330ml0.879848
331/01/12Athens37.9794523.71622672130shop_1adult-colaglass500ml120050
431/01/12Athens37.9794523.71622672130shop_1adult-colacan330ml0.3925696
531/01/12Athens37.9794523.71622672130shop_1orange-powerglass500ml115041
631/01/12Athens37.9794523.71622672130shop_1orange-powercan330ml0.4334578
731/01/12Athens37.9794523.71622672130shop_1gazozaglass500ml0.4944734
831/01/12Athens37.9794523.71622672130shop_1lemon-boostglass500ml0.718623
931/01/12Athens37.9794523.71622672130shop_1lemon-boostplastic1.5lt2.219645

CREATE TABLE train (
  "id" DOUBLE,
  "date" VARCHAR,
  "city" VARCHAR,
  "lat" DOUBLE,
  "long" DOUBLE,
  "pop" DOUBLE,
  "shop" VARCHAR,
  "brand" VARCHAR,
  "container" VARCHAR,
  "capacity" VARCHAR,
  "price" DOUBLE,
  "quantity" DOUBLE
);

Share link

Anyone who has the link will be able to view this.