Baselight

The Link Between Emotions And Actionability

A labeled dataset of tweets on the ability to take action about city complaints

@kaggle.thedevastator_the_link_between_emotions_and_the_actionability

Loading...
Loading...

About this Dataset

The Link Between Emotions And Actionability

The Link Between Emotions and Actionability


Finding a link between emotions and actionability tweets, Rana. 2022

This dataset aims to find actionable tweets tweeted about the City of Calgary that can pinpoint problems they should act upon.
The problem arises because they could not find any efficient methods to filter these actionable tweets. The current method used by the City of Calgary to find problems they can act upon requires a lot of human interaction and time.

Instead of spending all these resources to find problems, They believe these resources are better spent solving the problems. They
believe that tweets conveying a fearful emotion are more likely to be actionable.

The authors found a strong correlation of 0.694 between the number of fearful tweets per month to the number of actionable
tweets in a month. Additionally, the authors found out that a tweet that was labeled fearful has a 0.5 probability to be actionable.

Tables

Data Normalized

@kaggle.thedevastator_the_link_between_emotions_and_the_actionability.data_normalized
  • 368.07 KB
  • 2000 rows
  • 16 columns
Loading...

CREATE TABLE data_normalized (
  "unnamed_0_2" BIGINT,
  "unnamed_0_1" BIGINT,
  "unnamed_0" BIGINT,
  "id" DOUBLE,
  "author_id" DOUBLE,
  "text" VARCHAR,
  "hashtags" VARCHAR,
  "created_at" VARCHAR,
  "geo" VARCHAR,
  "like_count" BIGINT,
  "quote_count" BIGINT,
  "reply_count" BIGINT,
  "retweet_count" BIGINT,
  "possibly_sensitive" VARCHAR,
  "actionability" VARCHAR,
  "actionability_2" VARCHAR
);

Data Normlized

@kaggle.thedevastator_the_link_between_emotions_and_the_actionability.data_normlized
  • 368.07 KB
  • 2000 rows
  • 16 columns
Loading...

CREATE TABLE data_normlized (
  "unnamed_0_2" BIGINT,
  "unnamed_0_1" BIGINT,
  "unnamed_0" BIGINT,
  "id" DOUBLE,
  "author_id" DOUBLE,
  "text" VARCHAR,
  "hashtags" VARCHAR,
  "created_at" VARCHAR,
  "geo" VARCHAR,
  "like_count" BIGINT,
  "quote_count" BIGINT,
  "reply_count" BIGINT,
  "retweet_count" BIGINT,
  "possibly_sensitive" VARCHAR,
  "actionability" VARCHAR,
  "actionability_2" VARCHAR
);

Data Sample

@kaggle.thedevastator_the_link_between_emotions_and_the_actionability.data_sample
  • 115.88 KB
  • 300 rows
  • 26 columns
Loading...

CREATE TABLE data_sample (
  "unnamed_0_3" BIGINT,
  "unnamed_0_2" BIGINT,
  "unnamed_0" BIGINT,
  "level_0" BIGINT,
  "index" BIGINT,
  "unnamed_0_1" BIGINT,
  "unnamed_0_1_1" BIGINT,
  "id" DOUBLE,
  "author_id" DOUBLE,
  "text" VARCHAR,
  "hashtags" VARCHAR,
  "created_at" VARCHAR,
  "geo" VARCHAR,
  "like_count" BIGINT,
  "quote_count" BIGINT,
  "reply_count" BIGINT,
  "retweet_count" BIGINT,
  "possibly_sensitive" BOOLEAN,
  "text_normalized" VARCHAR,
  "cluster" BIGINT,
  "distance_from_level_1_centroid" DOUBLE,
  "sub_cluster" BIGINT,
  "distance_from_level_2_centroid" DOUBLE,
  "emotion" VARCHAR,
  "emotion_score" DOUBLE,
  "actionability" VARCHAR
);

Example

@kaggle.thedevastator_the_link_between_emotions_and_the_actionability.example
  • 47.99 KB
  • 301 rows
  • 6 columns
Loading...

CREATE TABLE example (
  "text" VARCHAR,
  "reeshan_eval" VARCHAR,
  "reeshad_actionable" VARCHAR,
  "divyansh_eval" VARCHAR,
  "divyansh_actionable" VARCHAR,
  "kirtan" VARCHAR
);

Example2

@kaggle.thedevastator_the_link_between_emotions_and_the_actionability.example2
  • 16.82 KB
  • 111 rows
  • 7 columns
Loading...

CREATE TABLE example2 (
  "text" VARCHAR,
  "kirtan_eval" VARCHAR,
  "kirtan_actionable" VARCHAR,
  "reeshad_eval" VARCHAR,
  "reeshad_actionable" VARCHAR,
  "divyansh_eval" VARCHAR,
  "divyansh_actionable" VARCHAR
);

Example3

@kaggle.thedevastator_the_link_between_emotions_and_the_actionability.example3
  • 14.74 KB
  • 56 rows
  • 6 columns
Loading...

CREATE TABLE example3 (
  "text" VARCHAR,
  "kirtan" VARCHAR,
  "reeshad_eval" VARCHAR,
  "reeshad_actionable" VARCHAR,
  "divyansh_eval" VARCHAR,
  "divyansh_actionable" VARCHAR
);

Example Normalized

@kaggle.thedevastator_the_link_between_emotions_and_the_actionability.example_normalized
  • 76.19 KB
  • 468 rows
  • 11 columns
Loading...

CREATE TABLE example_normalized (
  "unnamed_0" BIGINT,
  "text" VARCHAR,
  "kirtan_eval" VARCHAR,
  "kirtan_actionable" VARCHAR,
  "reeshad_eval" VARCHAR,
  "reeshad_actionable" VARCHAR,
  "divyansh_eval" VARCHAR,
  "divyansh_actionable" VARCHAR,
  "reeshan_eval" VARCHAR,
  "emotion" VARCHAR,
  "emotion_score" DOUBLE
);

News Tweets

@kaggle.thedevastator_the_link_between_emotions_and_the_actionability.news_tweets
  • 6.58 MB
  • 4000 rows
  • 2 columns
Loading...

CREATE TABLE news_tweets (
  "unnamed_0" BIGINT,
  "train" VARCHAR
);

Park Tweet File

@kaggle.thedevastator_the_link_between_emotions_and_the_actionability.park_tweet_file
  • 2.81 MB
  • 10641 rows
  • 24 columns
Loading...

CREATE TABLE park_tweet_file (
  "unnamed_0_2" BIGINT,
  "unnamed_0" BIGINT,
  "level_0" BIGINT,
  "index" BIGINT,
  "unnamed_0_1" BIGINT,
  "unnamed_0_1_1" BIGINT,
  "id" DOUBLE,
  "author_id" DOUBLE,
  "text" VARCHAR,
  "hashtags" VARCHAR,
  "created_at" VARCHAR,
  "geo" VARCHAR,
  "like_count" BIGINT,
  "quote_count" BIGINT,
  "reply_count" BIGINT,
  "retweet_count" BIGINT,
  "possibly_sensitive" BOOLEAN,
  "text_normalized" VARCHAR,
  "cluster" BIGINT,
  "distance_from_level_1_centroid" DOUBLE,
  "sub_cluster" BIGINT,
  "distance_from_level_2_centroid" DOUBLE,
  "emotion" VARCHAR,
  "emotion_score" DOUBLE
);

Sample 1000–1 Reeshad

@kaggle.thedevastator_the_link_between_emotions_and_the_actionability.sample_1000_1_reeshad
  • 187.78 KB
  • 1000 rows
  • 14 columns
Loading...

CREATE TABLE sample_1000_1_reeshad (
  "unnamed_0_1" BIGINT,
  "unnamed_0" BIGINT,
  "id" DOUBLE,
  "author_id" DOUBLE,
  "text" VARCHAR,
  "hashtags" VARCHAR,
  "created_at" VARCHAR,
  "geo" VARCHAR,
  "like_count" BIGINT,
  "quote_count" BIGINT,
  "reply_count" BIGINT,
  "retweet_count" BIGINT,
  "possibly_sensitive" VARCHAR,
  "actionability" VARCHAR
);

Sample 1000–1 Anita

@kaggle.thedevastator_the_link_between_emotions_and_the_actionability.sample_1000_1_anita
  • 188.32 KB
  • 1000 rows
  • 15 columns
Loading...

CREATE TABLE sample_1000_1_anita (
  "unnamed_0_1" BIGINT,
  "unnamed_0" BIGINT,
  "id" DOUBLE,
  "author_id" DOUBLE,
  "text" VARCHAR,
  "hashtags" VARCHAR,
  "created_at" VARCHAR,
  "geo" VARCHAR,
  "like_count" BIGINT,
  "quote_count" BIGINT,
  "reply_count" BIGINT,
  "retweet_count" BIGINT,
  "possibly_sensitive" BOOLEAN,
  "unnamed_13" VARCHAR,
  "actionability" VARCHAR
);

Sample 1000–2 Divyansh

@kaggle.thedevastator_the_link_between_emotions_and_the_actionability.sample_1000_2_divyansh
  • 183.4 KB
  • 1000 rows
  • 14 columns
Loading...

CREATE TABLE sample_1000_2_divyansh (
  "unnamed_0_1" BIGINT,
  "unnamed_0" BIGINT,
  "id" DOUBLE,
  "author_id" DOUBLE,
  "text" VARCHAR,
  "hashtags" VARCHAR,
  "created_at" VARCHAR,
  "geo" VARCHAR,
  "like_count" BIGINT,
  "quote_count" BIGINT,
  "reply_count" BIGINT,
  "retweet_count" BIGINT,
  "possibly_sensitive" BOOLEAN,
  "actionability" VARCHAR
);

Sample 1000–2 Kirtan

@kaggle.thedevastator_the_link_between_emotions_and_the_actionability.sample_1000_2_kirtan
  • 185 KB
  • 1000 rows
  • 17 columns
Loading...

CREATE TABLE sample_1000_2_kirtan (
  "unnamed_0_1" BIGINT,
  "unnamed_0" BIGINT,
  "id" DOUBLE,
  "author_id" DOUBLE,
  "text" VARCHAR,
  "hashtags" VARCHAR,
  "created_at" VARCHAR,
  "geo" VARCHAR,
  "like_count" BIGINT,
  "quote_count" BIGINT,
  "reply_count" BIGINT,
  "retweet_count" BIGINT,
  "possibly_sensitive" BOOLEAN,
  "unnamed_13" VARCHAR,
  "unnamed_14" VARCHAR,
  "unnamed_15" VARCHAR,
  "actionability" VARCHAR
);

Share link

Anyone who has the link will be able to view this.