Solar Output Prediction Using Weather Data
Using the weather data, predict solar output
@kaggle.thedevastator_solar_output_prediction_using_weather_data
Using the weather data, predict solar output
@kaggle.thedevastator_solar_output_prediction_using_weather_data
By [source]
This dataset consists of solar output predictions using weather data. The data was collected from various sources and contains information on solar output, weather, date, and time. The solar output predictions are based on historical weather patterns and data
This dataset can be used to predict solar output using weather data. The data was collected from various sources and contains information on solar output, weather, date, and time. The dataset can be used to train a model that predicts solar output based on weather conditions
- The dataset can be used to predict solar output for a given location.
- The dataset can be used to study the relationship between weather and solar output.
- The dataset can be used to develop a new approach to predicting solar output
License
> License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication
> No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: rawWeatherDataStanford.csv
Column name | Description |
---|---|
WBAN | Weather Bureau Air Force Navy (Column Type: Integer) |
Date | The date of the observation (Column Type: Date) |
Time | The time of the observation (Column Type: Time) |
SkyCondition | The sky condition at the time of the observation (Column Type: String) |
Visibility | The visibility at the time of the observation (Column Type: Integer) |
Temperature | The temperature at the time of the observation (Column Type: Integer) |
DewPoint | The dew point at the time of the observation (Column Type: Integer) |
WindSpeed | The wind speed at the time of the observation (Column Type: Integer) |
StationPressure | The station pressure at the time of the observation (Column Type: Integer) |
Altimeter | The altimeter at the time of the observation (Column Type: Integer) |
File: Erle_zipcodes.csv
File: example_config.csv
Column name | Description |
---|---|
zip5 | The zip code of the location where the data was collected. (String) |
start_date | The start date of the data collection. (Date) |
end_date | The end date of the data collection. (Date) |
File: weather_dev.csv
File: weather_test.csv
Column name | Description |
---|---|
11;1;10;8.63;6.21;83;16.32;28.91;29.69;1293.75 |
File: weather_train.csv
File: solar-output_hourly.csv
File: weather_test_timeline.csv
If you use this dataset in your research, please credit the original author.
CREATE TABLE erle_zipcodes (
"zip" BIGINT,
"city" VARCHAR,
"state" VARCHAR,
"latitude" DOUBLE,
"longitude" DOUBLE,
"timezone" BIGINT,
"dst" BIGINT
);
CREATE TABLE error_pca5_12hour (
"n_12" BIGINT -- 12,
"n_20" BIGINT -- 20,
"n_2" BIGINT -- 2,
"n_2016" BIGINT -- 2016,
"n_0_31639" DOUBLE -- 0.31639
);
CREATE TABLE error_pca5_16hour (
"n_16" BIGINT -- 16,
"n_11" BIGINT -- 11,
"n_2" BIGINT -- 2,
"n_2016" BIGINT -- 2016,
"n_4_8897" DOUBLE -- 4.8897
);
CREATE TABLE error_pca5_8hour (
"n_8" BIGINT -- 8,
"n_29" BIGINT -- 29,
"n_2" BIGINT -- 2,
"n_2016" BIGINT -- 2016,
"n_0_47614" DOUBLE -- 0.47614
);
CREATE TABLE error_wlr_12hour (
"n_12" BIGINT -- 12,
"n_20" BIGINT -- 20,
"n_2" BIGINT -- 2,
"n_2016" BIGINT -- 2016,
"n_0_28133" DOUBLE -- 0.28133
);
CREATE TABLE error_wlr_16hour (
"n_16" BIGINT -- 16,
"n_11" BIGINT -- 11,
"n_2" BIGINT -- 2,
"n_2016" BIGINT -- 2016,
"n_2_685" DOUBLE -- 2.685
);
CREATE TABLE error_wlr_8hour (
"n_8" BIGINT -- 8,
"n_29" BIGINT -- 29,
"n_2" BIGINT -- 2,
"n_2016" BIGINT -- 2016,
"n_0_45921" DOUBLE -- 0.45921
);
CREATE TABLE example_config (
"zip5" BIGINT,
"start_date" TIMESTAMP,
"end_date" TIMESTAMP
);
CREATE TABLE pcacorrelation (
"n_0_14" DOUBLE -- 0.14,
"unnamed_1" DOUBLE -- Unnamed: 1,
"n_6" DOUBLE -- 6
);
CREATE TABLE rawweatherdatastanford (
"wban" BIGINT,
"date" BIGINT,
"time" BIGINT,
"skycondition" VARCHAR,
"visibility" VARCHAR,
"temperature" VARCHAR,
"dewpoint" VARCHAR,
"relativehumidity" VARCHAR,
"windspeed" VARCHAR,
"stationpressure" VARCHAR,
"altimeter" VARCHAR
);
CREATE TABLE solar_output_daily (
"timestamp" TIMESTAMP,
"new_nexus_1272_meter" VARCHAR,
"inverters" VARCHAR,
"site_performance_estimate" VARCHAR
);
CREATE TABLE solar_output_hourly (
"month" BIGINT,
"day" BIGINT,
"year" BIGINT,
"hr" BIGINT,
"inverter_hr_mean" DOUBLE
);
CREATE TABLE weather_dev (
"n_8" BIGINT -- 8,
"n_0_14" DOUBLE -- 0.14,
"n_10" DOUBLE -- 10,
"n_24_18" DOUBLE -- 24.18,
"n_11_59" DOUBLE -- 11.59,
"n_41_36" DOUBLE -- 41.36,
"n_9_04" DOUBLE -- 9.04,
"n_29_24" DOUBLE -- 29.24,
"n_30_03" DOUBLE -- 30.03,
"n_2132" DOUBLE -- 2132
);
CREATE TABLE weather_test (
"n_11" BIGINT -- 11,
"n_1" DOUBLE -- 1,
"n_10" DOUBLE -- 10,
"n_8_63" DOUBLE -- 8.63,
"n_6_21" DOUBLE -- 6.21,
"n_83" DOUBLE -- 83,
"n_16_32" DOUBLE -- 16.32,
"n_28_91" DOUBLE -- 28.91,
"n_29_69" DOUBLE -- 29.69,
"n_1293_75" DOUBLE -- 1293.75
);
CREATE TABLE weather_test_timeline (
"n_27" BIGINT -- 27,
"n_4" BIGINT -- 4,
"n_2017" BIGINT -- 2017
);
CREATE TABLE weather_train (
"n_12" BIGINT -- 12,
"n_1" DOUBLE -- 1,
"n_1_85" DOUBLE -- 1.85,
"n_6_97" DOUBLE -- 6.97,
"n_6_9" DOUBLE -- 6.9,
"n_98_24" DOUBLE -- 98.24,
"n_10_92" DOUBLE -- 10.92,
"n_29_18" DOUBLE -- 29.18,
"n_29_97" DOUBLE -- 29.97,
"n_449_25" DOUBLE -- 449.25
);
Anyone who has the link will be able to view this.