Baselight

Multi-Class Classification Problem

Given a person’s credit-related information, build a machine learning model that

@kaggle.sudhanshu2198_processed_data_credit_score

Score
@kaggle.sudhanshu2198_processed_data_credit_score.score

  • 3.69 MB
  • 99960 rows
  • 21 columns
delay_from_due_date

Delay From Due Date

num_of_delayed_payment

Num Of Delayed Payment

num_credit_inquiries

Num Credit Inquiries

credit_utilization_ratio

Credit Utilization Ratio

credit_history_age

Credit History Age

payment_of_min_amount

Payment Of Min Amount

amount_invested_monthly

Amount Invested Monthly

monthly_balance

Monthly Balance

credit_score

Credit Score

credit_mix

Credit Mix

payment_behaviour

Payment Behaviour

age

Age

annual_income

Annual Income

num_bank_accounts

Num Bank Accounts

num_credit_card

Num Credit Card

interest_rate

Interest Rate

num_of_loan

Num Of Loan

monthly_inhand_salary

Monthly Inhand Salary

changed_credit_limit

Changed Credit Limit

outstanding_debt

Outstanding Debt

total_emi_per_month

Total EMI Per Month

37426.822619623699016265No80.41529543900253312.49408867943663GoodGoodHigh_spent_Medium_value_payments2319114.1234341824.843333333332811.27809.9849.57494921489417
37431.94496005538421265No118.28022162236736284.62916249607184GoodGoodHigh_spent_Medium_value_payments2319114.1234341824.843333333332811.27809.9849.57494921489417
37428.60935202206993267No81.699521264648331.2098628537912GoodGoodHigh_spent_Medium_value_payments2319114.1234341824.843333333332811.27809.9849.57494921489417
54431.37786186958236268No199.4580743910713223.45130972736783GoodGoodHigh_spent_Medium_value_payments2319114.1234341824.843333333332811.27809.9849.57494921489417
64424.797346908844982269No41.420153086217326341.48923103222177GoodGoodHigh_spent_Medium_value_payments2319114.1234341824.843333333332811.27809.9849.57494921489417
84427.26225871052017270No62.430172331195294340.4792117872438GoodGoodHigh_spent_Medium_value_payments2319114.1234341824.843333333332811.27809.9849.57494921489417
38422.53759303178384271No178.3440674122349244.5653167062043GoodGoodHigh_spent_Medium_value_payments2319114.1234341824.843333333332811.27809.9849.57494921489417
36423.93379480196552271No24.785216509052056358.12416760938714StandardGoodHigh_spent_Medium_value_payments2319114.1234341824.843333333332811.27809.9849.57494921489417
34224.46403063758457319No104.291825168246470.69062692529184StandardGoodHigh_spent_Large_value_payments2834847.8424613037.9866666666665.42605.0318.816214573128885
71238.550848433956325320No40.39123782853101484.5912142650067GoodGoodHigh_spent_Large_value_payments2834847.8424613037.9866666666665.42605.0318.816214573128885

CREATE TABLE score (
  "delay_from_due_date" DOUBLE,
  "num_of_delayed_payment" DOUBLE,
  "num_credit_inquiries" DOUBLE,
  "credit_utilization_ratio" DOUBLE,
  "credit_history_age" DOUBLE,
  "payment_of_min_amount" VARCHAR,
  "amount_invested_monthly" DOUBLE,
  "monthly_balance" DOUBLE,
  "credit_score" VARCHAR,
  "credit_mix" VARCHAR,
  "payment_behaviour" VARCHAR,
  "age" DOUBLE,
  "annual_income" DOUBLE,
  "num_bank_accounts" DOUBLE,
  "num_credit_card" DOUBLE,
  "interest_rate" DOUBLE,
  "num_of_loan" DOUBLE,
  "monthly_inhand_salary" DOUBLE,
  "changed_credit_limit" DOUBLE,
  "outstanding_debt" DOUBLE,
  "total_emi_per_month" DOUBLE
);

Share link

Anyone who has the link will be able to view this.