Baselight

Automobile Loan Default Dataset

Predict whether a client will default on the vehicle loan payment or not

@kaggle.saurabhbagchi_dish_network_hackathon

Train Dataset
@kaggle.saurabhbagchi_dish_network_hackathon.train_dataset

  • 5.46 MB
  • 121856 rows
  • 40 columns
id

ID

client_income

Client Income

car_owned

Car Owned

bike_owned

Bike Owned

active_loan

Active Loan

house_own

House Own

child_count

Child Count

credit_amount

Credit Amount

loan_annuity

Loan Annuity

accompany_client

Accompany Client

client_income_type

Client Income Type

client_education

Client Education

client_marital_status

Client Marital Status

client_gender

Client Gender

loan_contract_type

Loan Contract Type

client_housing_type

Client Housing Type

population_region_relative

Population Region Relative

age_days

Age Days

employed_days

Employed Days

registration_days

Registration Days

id_days

ID Days

own_house_age

Own House Age

mobile_tag

Mobile Tag

homephone_tag

Homephone Tag

workphone_working

Workphone Working

client_occupation

Client Occupation

client_family_members

Client Family Members

cleint_city_rating

Cleint City Rating

application_process_day

Application Process Day

application_process_hour

Application Process Hour

client_permanent_match_tag

Client Permanent Match Tag

client_contact_work_tag

Client Contact Work Tag

type_organization

Type Organization

score_source_1

Score Source 1

score_source_2

Score Source 2

score_source_3

Score Source 3

social_circle_default

Social Circle Default

phone_change

Phone Change

credit_bureau

Credit Bureau

default

Default

121425096750161190.553416.85AloneCommercialSecondaryMMaleCLHome0.028663139571062612338311Sales22617YesYesSelf-employed0.568066150.47878667nan0.018663
121389362025011152821826.55AloneServiceGraduationMMaleCLHome0.00857514162412978332111nan22310YesYesGovernment0.5633600990.215068341nan
12181264180001159527.352788.2AloneServiceGraduation dropoutWMaleCLFamily0.0228167905102nan3311Realty agents224YesYesSelf-employed0.5527949720.3296550540.0742277
12188929157501153870.42295.45AloneRetiredSecondaryMMaleCLHome0.01055623195365243nan7751nan23215YesYesXNA0.1351823370.63135453717003
1213338533750112133988.43547.35AloneCommercialSecondaryMFemaleCLHome0.0207131136629775516404361Laborers413YesYesBusiness Entity Type 30.5081985220.3011819770.3556387170.20216741
1219161411250111113752653.85AloneServiceSecondaryWFemaleCLHome0.019101138811184391039101Laborers22210YesYesOther0.6979275620.4206109640.0639739
12128086157501111288353779.55AloneRetiredSecondarySMaleCLHome0.016612213233652431134855101nan12314YesYesXNA0.7299132150.6025453340.5118918020.20413
12215264135001160415.23097.8AloneRetiredSecondaryMMaleCLHome0.0091752249336524312617528011nan22415YesYesXNA0.7114681990.6575078980.54959650216874
12159147135001111450001200.15RelativeCommercialGraduationMFemaleCLHome0.006008nan7889545526651411Sales32413YesYesSelf-employed0.4757265180.6375935540.5531646990.1671611
1213054712150116320.151294.65AloneRetiredSecondaryWMaleCLHome0.01661220507365243283440531nan129YesYesXNA0.6822850920.0633431280.0806495445335

CREATE TABLE train_dataset (
  "id" BIGINT,
  "client_income" VARCHAR,
  "car_owned" DOUBLE,
  "bike_owned" DOUBLE,
  "active_loan" DOUBLE,
  "house_own" DOUBLE,
  "child_count" DOUBLE,
  "credit_amount" VARCHAR,
  "loan_annuity" VARCHAR,
  "accompany_client" VARCHAR,
  "client_income_type" VARCHAR,
  "client_education" VARCHAR,
  "client_marital_status" VARCHAR,
  "client_gender" VARCHAR,
  "loan_contract_type" VARCHAR,
  "client_housing_type" VARCHAR,
  "population_region_relative" VARCHAR,
  "age_days" VARCHAR,
  "employed_days" VARCHAR,
  "registration_days" VARCHAR,
  "id_days" VARCHAR,
  "own_house_age" DOUBLE,
  "mobile_tag" BIGINT,
  "homephone_tag" BIGINT,
  "workphone_working" BIGINT,
  "client_occupation" VARCHAR,
  "client_family_members" DOUBLE,
  "cleint_city_rating" DOUBLE,
  "application_process_day" DOUBLE,
  "application_process_hour" DOUBLE,
  "client_permanent_match_tag" VARCHAR,
  "client_contact_work_tag" VARCHAR,
  "type_organization" VARCHAR,
  "score_source_1" DOUBLE,
  "score_source_2" DOUBLE,
  "score_source_3" VARCHAR,
  "social_circle_default" DOUBLE,
  "phone_change" DOUBLE,
  "credit_bureau" DOUBLE,
  "default" BIGINT
);

Share link

Anyone who has the link will be able to view this.