Baselight

Automobile Loan Default Dataset

Predict whether a client will default on the vehicle loan payment or not

@kaggle.saurabhbagchi_dish_network_hackathon

Test Dataset
@kaggle.saurabhbagchi_dish_network_hackathon.test_dataset

  • 3.65 MB
  • 80900 rows
  • 39 columns
id

ID

client_income

Client Income

car_owned

Car Owned

bike_owned

Bike Owned

active_loan

Active Loan

house_own

House Own

child_count

Child Count

credit_amount

Credit Amount

loan_annuity

Loan Annuity

accompany_client

Accompany Client

client_income_type

Client Income Type

client_education

Client Education

client_marital_status

Client Marital Status

client_gender

Client Gender

loan_contract_type

Loan Contract Type

client_housing_type

Client Housing Type

population_region_relative

Population Region Relative

age_days

Age Days

employed_days

Employed Days

registration_days

Registration Days

id_days

ID Days

own_house_age

Own House Age

mobile_tag

Mobile Tag

homephone_tag

Homephone Tag

workphone_working

Workphone Working

client_occupation

Client Occupation

client_family_members

Client Family Members

cleint_city_rating

Cleint City Rating

application_process_day

Application Process Day

application_process_hour

Application Process Hour

client_permanent_match_tag

Client Permanent Match Tag

client_contact_work_tag

Client Contact Work Tag

type_organization

Type Organization

score_source_1

Score Source 1

score_source_2

Score Source 2

score_source_3

Score Source 3

social_circle_default

Social Circle Default

phone_change

Phone Change

credit_bureau

Credit Bureau

12202227112501111125004474.8RelativeServicenanMMaleCLHome0.019101200632523231833181nan2416YesYesSelf-employed0.7571508090.6296742510.05157162
122793811350011113497523252.15AloneServiceSecondaryMFemaleCLHome0.01051320055169723865611Laborers53318NoYesSelf-employed0.342269008nan181
122227143825011675003375AloneCommercialGraduationMFemaleRLHome0.032561159431319981229611Managers21219YesYesBusiness Entity Type 30.683664701nan0.1503281
1226521520250150849.553814.65AloneGovt JobSecondarySMaleCLnan0.0145215634151049756121111nan12620NoNoMedicine0.3515806770.2299502970.6722428914424
122039701350011143603.22515.95AloneServiceSecondaryMFemaleCLHome0.0086251581110755478361871Managers22113YesYesSelf-employed0.731110460.566971040.730987379271
122198911350011110499.753664.8AloneRetiredSecondarySMaleCLHome0.019101221643652431420246261nan12412YesYesXNAnan0.7463002130.105212351
122797751125011153366.852273.85AloneGovt JobSecondaryMFemaleCLHome0.031329172782598326078441Core2228YesNoSecurity Ministries0.5592484180.4561175030.3757110121544
12250293135001945002776.05AloneServiceSecondaryWMaleCLHomenan17487197939310201Laborers12118YesYesBusiness Entity Type 30.7613080210.5172965810.01194951
12231470180001153747.15801.4AloneCommercialSecondaryMFemaleCLHome0.072508978823094484247031Laborers21313YesYesIndustry: type 110.4315164930.6870175510.7121551550.084517765
1227015222500126773.553719.7AloneServiceSecondaryMFemaleCLnan0.00730516793616101234711Laborers23513YesYesOther0.5854688660.3824930150.6058362650.09281752

CREATE TABLE test_dataset (
  "id" BIGINT,
  "client_income" VARCHAR,
  "car_owned" DOUBLE,
  "bike_owned" DOUBLE,
  "active_loan" DOUBLE,
  "house_own" DOUBLE,
  "child_count" DOUBLE,
  "credit_amount" VARCHAR,
  "loan_annuity" VARCHAR,
  "accompany_client" VARCHAR,
  "client_income_type" VARCHAR,
  "client_education" VARCHAR,
  "client_marital_status" VARCHAR,
  "client_gender" VARCHAR,
  "loan_contract_type" VARCHAR,
  "client_housing_type" VARCHAR,
  "population_region_relative" VARCHAR,
  "age_days" VARCHAR,
  "employed_days" VARCHAR,
  "registration_days" VARCHAR,
  "id_days" VARCHAR,
  "own_house_age" DOUBLE,
  "mobile_tag" BIGINT,
  "homephone_tag" BIGINT,
  "workphone_working" BIGINT,
  "client_occupation" VARCHAR,
  "client_family_members" DOUBLE,
  "cleint_city_rating" DOUBLE,
  "application_process_day" DOUBLE,
  "application_process_hour" DOUBLE,
  "client_permanent_match_tag" VARCHAR,
  "client_contact_work_tag" VARCHAR,
  "type_organization" VARCHAR,
  "score_source_1" DOUBLE,
  "score_source_2" VARCHAR,
  "score_source_3" VARCHAR,
  "social_circle_default" DOUBLE,
  "phone_change" DOUBLE,
  "credit_bureau" DOUBLE
);

Share link

Anyone who has the link will be able to view this.