Baselight

Analytics Vidhya Hackathon 4

Stock prices dataset with exogenous variables

@kaggle.saurabhbagchi_av_hackathon_4

Train Awol0xl
@kaggle.saurabhbagchi_av_hackathon_4.train_awol0xl

  • 2.48 MB
  • 73439 rows
  • 9 columns
id

ID

stock

Stock

date

Date

open

Open

high

High

low

Low

close

Close

holiday

Holiday

unpredictability_score

Unpredictability Score

id_0Tue Jan 03 2017 00:00:00 GMT+0000 (Coordinated Universal Time)82.996182.739682.914482.810117
id_1Wed Jan 04 2017 00:00:00 GMT+0000 (Coordinated Universal Time)83.131283.166983.377982.9697
id_2Thu Jan 05 2017 00:00:00 GMT+0000 (Coordinated Universal Time)82.662282.763482.898482.85787
id_3Fri Jan 06 2017 00:00:00 GMT+0000 (Coordinated Universal Time)83.027982.79582.842582.73857
id_4Mon Jan 09 2017 00:00:00 GMT+0000 (Coordinated Universal Time)82.376182.082882.147381.86417
id_5Tue Jan 10 2017 00:00:00 GMT+0000 (Coordinated Universal Time)81.708381.33980.948680.67967
id_6Wed Jan 11 2017 00:00:00 GMT+0000 (Coordinated Universal Time)80.531980.579380.676980.55237
id_7Thu Jan 12 2017 00:00:00 GMT+0000 (Coordinated Universal Time)80.428580.705980.812780.57627
id_8Fri Jan 13 2017 00:00:00 GMT+0000 (Coordinated Universal Time)80.563780.381580.52580.34577
id_9Tue Jan 17 2017 00:00:00 GMT+0000 (Coordinated Universal Time)79.919880.547680.397280.85447

CREATE TABLE train_awol0xl (
  "id" VARCHAR,
  "stock" BIGINT,
  "date" TIMESTAMP,
  "open" DOUBLE,
  "high" DOUBLE,
  "low" DOUBLE,
  "close" DOUBLE,
  "holiday" BIGINT,
  "unpredictability_score" BIGINT
);

Share link

Anyone who has the link will be able to view this.