Baselight

BaSalam (comments & Products)

Unveiling Insights into BaSalam's Product Universe and Customer Sentiments

@kaggle.radeai_basalam_comments_and_products

About this Dataset

BaSalam (comments & Products)

Introducing the BaSalam (comments & products) dataset: a treasure trove of insights into the vibrant online marketplace of BaSalam! πŸŒπŸ›οΈ

Dive into two feature-packed files: BaSalam.products.csv and BaSalam.reviews.csv, showcasing a detailed inventory of products and a rich tapestry of customer interactions. πŸ“ŠπŸ“

BaSalam.products.csv Highlights 🌟
Get a complete look at each product with information on:

Basic identifiers and metrics: _id, _score πŸ†”

Sales performance: sales_count_week πŸ“ˆ

Detailed product descriptions: name, price, status_title 🏷️

Stock and shipping nuances: stock, has_delivery, isFreeShipping, IsAvailable, IsSaleable πŸ“¦πŸšš

Visuals and media: photo_MEDIUM, photo_SMALL, video_ORIGINAL πŸ–ΌοΈπŸŽ₯

Customer ratings and reviews: rating_average, rating_count, rating_signals ⭐

Pricing and promotional details: primaryPrice, promotions πŸ’Έ

Extensive vendor profiles: vendor_name, vendor_score, vendor_status_title, and more πŸ”

Categorization and navigation: categoryId, new_categoryId, navigation_id, categoryTitle πŸ—‚οΈ

Additional attributes and miscellaneous details: mainAttribute, preparationDays, weight πŸ“πŸ› οΈ

BaSalam.reviews.csv Highlights πŸ“˜

Explore comprehensive feedback with:

Review identifiers and timelines: _id, productId, createdAt, updatedAt πŸ“…

User engagement metrics: user_id, name_of_user, photo_of_user πŸ‘€

Interactive features: likeCount, dislikeCount, isLikedByCurrentUser, isDislikedByCurrentUser πŸ‘πŸ‘Ž

Rich review content: description, attachments, history_count βœοΈπŸ“„

Detailed reasons for reviews through reason_ids array and variation_metadata 🧐

This dataset is not just dataβ€”it’s a gateway to understanding the pulse of the BaSalam marketplace, providing a foundation for nuanced market analysis, sentiment exploration, and machine learning applications in e-commerce. πŸŽ―πŸ”

Ready to analyze trends, gauge consumer sentiment, or examine product performance? The BaSalam dataset offers all the necessary tools and data for a thorough dive into e-commerce dynamics! πŸš€πŸ’‘

Tables

Basalam Products

@kaggle.radeai_basalam_comments_and_products.basalam_products
  • 455.76 MB
  • 2411358 rows
  • 43 columns
Loading...

CREATE TABLE basalam_products (
  "n__id" BIGINT,
  "n__score" DOUBLE,
  "sales_count_week" BIGINT,
  "name" VARCHAR,
  "price" DOUBLE,
  "status_id" DOUBLE,
  "status_title" VARCHAR,
  "stock" DOUBLE,
  "photo_medium" VARCHAR,
  "photo_small" VARCHAR,
  "rating_average" DOUBLE,
  "rating_count" DOUBLE,
  "rating_signals" DOUBLE,
  "primaryprice" DOUBLE,
  "preparationdays" DOUBLE,
  "weight" DOUBLE,
  "categoryid" DOUBLE,
  "has_delivery" VARCHAR,
  "has_variation" VARCHAR,
  "new_categoryid" DOUBLE,
  "navigation_id" DOUBLE,
  "vendor_name" VARCHAR,
  "vendor_identifier" VARCHAR,
  "vendor_statusid" DOUBLE,
  "vendor_freeshippingtoiran" DOUBLE,
  "vendor_freeshippingtosamecity" DOUBLE,
  "vendor_cityid" DOUBLE,
  "vendor_provinceid" DOUBLE,
  "vendor_has_delivery" VARCHAR,
  "vendor_score" DOUBLE,
  "vendor_id" DOUBLE,
  "vendor_status_id" DOUBLE,
  "vendor_status_title" VARCHAR,
  "vendor_owner_city" VARCHAR,
  "vendor_owner_id" DOUBLE,
  "isfreeshipping" VARCHAR,
  "isavailable" VARCHAR,
  "issaleable" VARCHAR,
  "mainattribute" VARCHAR,
  "categorytitle" VARCHAR,
  "published" VARCHAR,
  "video_original" VARCHAR,
  "promotions" VARCHAR
);

Basalam Reviews

@kaggle.radeai_basalam_comments_and_products.basalam_reviews
  • 414.13 MB
  • 3393574 rows
  • 31 columns
Loading...

CREATE TABLE basalam_reviews (
  "n__id" VARCHAR,
  "productid" BIGINT,
  "star" BIGINT,
  "user_id" BIGINT,
  "ispost" BOOLEAN,
  "ispublic" BOOLEAN,
  "id" BIGINT,
  "createdat" TIMESTAMP,
  "updatedat" TIMESTAMP,
  "hashid" VARCHAR,
  "isposted" VARCHAR,
  "islikedbycurrentuser" BOOLEAN,
  "isdislikedbycurrentuser" BOOLEAN,
  "likecount" BIGINT,
  "dislikecount" BIGINT,
  "attachments" VARCHAR,
  "history_count" BIGINT,
  "user_id_of_user" BIGINT,
  "name_of_user" VARCHAR,
  "hash_id_of_user" VARCHAR,
  "photo_of_user" VARCHAR,
  "description" VARCHAR,
  "reason_ids_0" DOUBLE,
  "reason_ids_1" DOUBLE,
  "reason_ids_2" DOUBLE,
  "reason_ids_3" DOUBLE,
  "reason_ids_4" DOUBLE,
  "reason_ids_5" DOUBLE,
  "reason_ids_6" DOUBLE,
  "reason_ids_7" DOUBLE,
  "variation_metadata" VARCHAR
);