Baselight

White Wine Quality

Simple and clean practice dataset for regression or classification modelling

@kaggle.piyushagni5_white_wine_quality

About this Dataset

White Wine Quality

Context

The two datasets are related to red and white variants of the Portuguese "Vinho Verde" wine. For more details, refer to [Cortez et al., 2009]. Due to privacy and logistic issues, only physicochemical (inputs) and sensory (the output) variables are available (e.g. there is no data about grape types, wine brand, wine selling price, etc.).

These datasets can be viewed as classification or regression tasks. The classes are ordered and not balanced (e.g. there are many more normal wines than excellent or poor ones). Outlier detection algorithms could be used to detect the few excellent or poor wines. Also, we are not sure if all input variables are relevant. So it could be interesting to test feature selection methods.

Content

For more information, read [Cortez et al., 2009].
Input variables (based on physicochemical tests):
1 - fixed acidity
2 - volatile acidity
3 - citric acid
4 - residual sugar
5 - chlorides
6 - free sulfur dioxide
7 - total sulfur dioxide
8 - density
9 - pH
10 - sulphates
11 - alcohol
Output variable (based on sensory data):
12 - quality (score between 0 and 10)

Acknowledgements

This dataset is also available from the UCI machine learning repository, https://archive.ics.uci.edu/ml/datasets/wine+quality, to get both the dataset i.e. red and white vinho verde wine samples, from the north of Portugal, please visit the above link.

Please include this citation if you plan to use this database:

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.
Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

Inspiration

We kagglers can apply several machine-learning algorithms to determine which physiochemical properties make a wine 'good'!

Relevant papers

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties.
In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

Share link

Anyone who has the link will be able to view this.