Baselight

Flight Price Predict (competition Format)

filght price regression problem

@kaggle.kukuroo3_flight_price_predict_competition_format

X Train
@kaggle.kukuroo3_flight_price_predict_competition_format.x_train

  • 72.37 KB
  • 5698 rows
  • 10 columns
filghtid

FilghtId

airline

Airline

flight

Flight

source_city

Source City

departure_time

Departure Time

stops

Stops

arrival_time

Arrival Time

destination_city

Destination City

duration

Duration

days_left

Days Left

252589VistaraUK-808BangaloreEarly_MorningoneNightMumbai13.2546
223754VistaraUK-927DelhiMorningoneEveningChennai10.4231
243398VistaraUK-988MumbaiNightoneMorningChennai1328
208360VistaraUK-815DelhiMorningoneNightMumbai12.6717
247226VistaraUK-854BangaloreEveningoneMorningDelhi13.6732
293881VistaraUK-822ChennaiMorningoneMorningBangalore23.0811
254119VistaraUK-814BangaloreNightoneEveningKolkata22.4221
272356VistaraUK-772KolkataMorningoneEarly_MorningHyderabad21.4245
271143VistaraUK-778KolkataAfternoononeAfternoonHyderabad21.2520
256513VistaraUK-850BangaloreEveningoneNightHyderabad2511

CREATE TABLE x_train (
  "filghtid" BIGINT,
  "airline" VARCHAR,
  "flight" VARCHAR,
  "source_city" VARCHAR,
  "departure_time" VARCHAR,
  "stops" VARCHAR,
  "arrival_time" VARCHAR,
  "destination_city" VARCHAR,
  "duration" DOUBLE,
  "days_left" BIGINT
);

Share link

Anyone who has the link will be able to view this.