Baselight

Processed Twitter Sentiment Dataset | Added Tokens

Tokenized and Sentiment-Labeled Tweets for NLP and Machine Learning

@kaggle.halemogpa_processed

Train Processed
@kaggle.halemogpa_processed.train_processed

  • 183 MB
  • 1600000 rows
  • 3 columns
text

Text

sentiment

Sentiment

tokens

Tokens

@switchfoot http://twitpic.com/2y1zl - Awww, that's a bummer. You shoulda got David Carr of Third Day to do it. ;D['@switchfoot', 'http://twitpic.com/2y1zl', '-', 'awww', ',', 'that', "'s", 'a', 'bummer', '.', ' ', 'you', 'shoulda', 'got', 'david', 'carr', 'of', 'third', 'day', 'to', 'do', 'it', '.', ';', 'd']
is upset that he can't update his Facebook by texting it... and might cry as a result School today also. Blah!['is', 'upset', 'that', 'he', 'ca', "n't", 'update', 'his', 'facebook', 'by', 'texting', 'it', '...', 'and', 'might', 'cry', 'as', 'a', 'result', ' ', 'school', 'today', 'also', '.', 'blah', '!']
@Kenichan I dived many times for the ball. Managed to save 50% The rest go out of bounds['@kenichan', 'i', 'dived', 'many', 'times', 'for', 'the', 'ball', '.', 'managed', 'to', 'save', '50', '%', ' ', 'the', 'rest', 'go', 'out', 'of', 'bounds']
my whole body feels itchy and like its on fire ['my', 'whole', 'body', 'feels', 'itchy', 'and', 'like', 'its', 'on', 'fire']
@nationwideclass no, it's not behaving at all. i'm mad. why am i here? because I can't see you all over there. ['@nationwideclass', 'no', ',', 'it', "'s", 'not', 'behaving', 'at', 'all', '.', 'i', "'m", 'mad', '.', 'why', 'am', 'i', 'here', '?', 'because', 'i', 'ca', "n't", 'see', 'you', 'all', 'over', 'there', '.']
@Kwesidei not the whole crew ['@kwesidei', 'not', 'the', 'whole', 'crew']
Need a hug ['need', 'a', 'hug']
@LOLTrish hey long time no see! Yes.. Rains a bit ,only a bit LOL , I'm fine thanks , how's you ?['@loltrish', 'hey', ' ', 'long', 'time', 'no', 'see', '!', 'yes', '..', 'rains', 'a', 'bit', ',', 'only', 'a', 'bit', ' ', 'lol', ',', 'i', "'m", 'fine', 'thanks', ',', 'how', "'s", 'you', '?']
@Tatiana_K nope they didn't have it ['@tatiana_k', 'nope', 'they', 'did', "n't", 'have', 'it']
@twittera que me muera ? ['@twittera', 'que', 'me', 'muera', '?']

CREATE TABLE train_processed (
  "text" VARCHAR,
  "sentiment" BIGINT,
  "tokens" VARCHAR
);

Share link

Anyone who has the link will be able to view this.