Baselight

China's GDP In Province

China's GDP in Province with Chinese and English

@kaggle.concyclics_chinas_gdp_in_province

Chinas Gdp In Province Zh
@kaggle.concyclics_chinas_gdp_in_province.chinas_gdp_in_province_zh

  • 27.33 KB
  • 29 rows
  • 32 columns
unnamed_0

Unnamed: 0

n

北京市

n_02e762

天津市

n_8495ef

河北省

n_26d2a7

山西省

n_fa6203

内蒙古自治区

n_596fda

辽宁省

n_ce10bb

吉林省

n_5324d0

黑龙江省

n_1471cd

上海市

n_548b96

江苏省

n_e76655

浙江省

n_e8ea56

安徽省

n_2236ef

福建省

n_ec0692

江西省

n_17dd8d

山东省

n_52b71b

河南省

n_27c9f2

湖北省

n_fffd35

湖南省

n_f85eb4

广东省

n_0a8140

广西壮族自治区

n_66c7a8

海南省

n_b94cfd

重庆市

n_e053ca

四川省

n_76463e

贵州省

n_d02866

云南省

n_d36431

西藏自治区

n_78fa10

陕西省

n_e1b13d

甘肃省

n_30fd79

青海省

n_f76bd0

宁夏回族自治区

n_8b2760

新疆维吾尔自治区

202036102.614083.736206.917651.917359.82511512311.313698.538700.610271964613.338680.643903.925691.57312954997.143443.541781.5110760.922156.75532.425002.848598.817826.624521.91902.726181.99016.73005.93920.613797.6
201935445.114055.534978.616961.617212.524855.311726.813544.437987.698656.86246236845.542326.624667.370540.553717.84542939894.1107986.921237.15330.823605.846363.816769.323223.81697.825793.28718.32941.13748.513597.1
20183310613362.932494.615958.116140.823510.511253.812846.536011.893207.658002.834010.938687.822716.566648.949935.94202236329.799945.219627.84910.721588.842902.115353.220880.61548.423941.98104.127483510.212809.4
20172988312450.630640.814484.314898.12169310922123133292585869.852403.129676.233842.420210.863012.144824.93723533828.191648.717790.74497.520066.337905.113605.418486134921473.57336.72465.13200.311159.9
201627041.211477.228474.111946.413789.320392.510427118952988777350.94725426307.729609.418388.658762.540249.33335330853.582163.216116.64090.21802333138.511792.416369117319045.86907.92258.22781.49630.8
201524779.110879.526398.411836.41294920210.310018116902688771255.943507.723831.226819.516780.955288.837084.13034428538.674732.414797.83734.216040.5303421054114960104317898.86556.620112579.49306.9
20142292610640.625208.912094.712158.220025.79966.512170.825269.864830.540023.522519.724942.115667.850774.834574.828242.125881.36817313587.8344914623.828891.39173.114041.7939.717402.56518.41847.72473.99264.5
201321134.69945.424259.611987.211392.419208.89427.911849.123204.159349.437334.62058422503.814300.247344.331632.52537823545.262503.412448.43115.913027.6265187973.112825.5828.215905.46014.51713.32327.78392.6
201219024.7904323077.511683.110470.117848.6867811015.821305.653701.934382.418341.720190.712807.742957.328961.922590.921207.257007.711303.62789.411595.423922.46742.211097.4710.214142.45393.11528.521317411.8
201117188.88112.521384.710894.49458.116354.97734.6993520009.748839.231854.816284.917917.711584.539064.926318.719942.51891553072.810299.92463.810161.221050.95615.69523.1611.512175.14816.91370.41931.86532

CREATE TABLE chinas_gdp_in_province_zh (
  "unnamed_0" BIGINT,
  "n" DOUBLE,
  "n_02e762" DOUBLE,
  "n_8495ef" DOUBLE,
  "n_26d2a7" DOUBLE,
  "n_fa6203" DOUBLE,
  "n_596fda" DOUBLE,
  "n_ce10bb" DOUBLE,
  "n_5324d0" DOUBLE,
  "n_1471cd" DOUBLE,
  "n_548b96" DOUBLE,
  "n_e76655" DOUBLE,
  "n_e8ea56" DOUBLE,
  "n_2236ef" DOUBLE,
  "n_ec0692" DOUBLE,
  "n_17dd8d" DOUBLE,
  "n_52b71b" DOUBLE,
  "n_27c9f2" DOUBLE,
  "n_fffd35" DOUBLE,
  "n_f85eb4" DOUBLE,
  "n_0a8140" DOUBLE,
  "n_66c7a8" DOUBLE,
  "n_b94cfd" DOUBLE,
  "n_e053ca" DOUBLE,
  "n_76463e" DOUBLE,
  "n_d02866" DOUBLE,
  "n_d36431" DOUBLE,
  "n_78fa10" DOUBLE,
  "n_e1b13d" DOUBLE,
  "n_30fd79" DOUBLE,
  "n_f76bd0" DOUBLE,
  "n_8b2760" DOUBLE
);

Share link

Anyone who has the link will be able to view this.