Baselight

IPL Complete Dataset (2008- Till Today)

The Most Comprehensive IPL Dataset

@kaggle.colearninglounge_ipl_dataset_download_python_tableau_analysis

Loading...
Loading...

About this Dataset

IPL Complete Dataset (2008- Till Today)

About Dataset

Context

Now that this year's IPL is over, let's not curb our cricket love and start analyzing the whole of IPL with this latest and complete Indian Premier League dataset. It contains the match descriptions, results, winners, players of the matches, ball-by-ball dataset, and much more. So, stop thinking and start analyzing.

Content

This dataset consists of two seperate CSV files: match_info and deliveries. These files contain the information of each match summary and ball-by-ball details, respectively.

Acknowledgments

Data Source: Cricsheet

PLEASE UPVOTE 👍 THIS DATASET IF YOU APPRECIATE OUR HARD WORK 🙏
WE WILL CONTINUOUSLY UPDATE THIS DATASET TO GIVE YOU THE BEST AND LATEST DATA TO WORK WITH 💯

Tables

Deliveries

@kaggle.colearninglounge_ipl_dataset_download_python_tableau_analysis.deliveries
  • 1.41 MB
  • 225954 rows
  • 23 columns
Loading...

CREATE TABLE deliveries (
  "match_id" BIGINT,
  "season" VARCHAR,
  "innings" BIGINT,
  "ball" DOUBLE,
  "batting_team" VARCHAR,
  "bowling_team" VARCHAR,
  "striker" VARCHAR,
  "non_striker" VARCHAR,
  "bowler" VARCHAR,
  "runs_off_bat" BIGINT,
  "extras" BIGINT,
  "wides" DOUBLE,
  "noballs" DOUBLE,
  "byes" DOUBLE,
  "legbyes" DOUBLE,
  "penalty" DOUBLE,
  "wicket_type" VARCHAR,
  "player_dismissed" VARCHAR,
  "other_wicket_type" VARCHAR,
  "other_player_dismissed" VARCHAR,
  "striker_id" VARCHAR,
  "non_striker_id" VARCHAR,
  "bowler_id" VARCHAR
);

Match Details

@kaggle.colearninglounge_ipl_dataset_download_python_tableau_analysis.match_details
  • 37.1 KB
  • 950 rows
  • 21 columns
Loading...

CREATE TABLE match_details (
  "balls_per_over" BIGINT,
  "team1" VARCHAR,
  "team2" VARCHAR,
  "gender" VARCHAR,
  "season" VARCHAR,
  "date" TIMESTAMP,
  "event" VARCHAR,
  "match_number" DOUBLE,
  "toss_winner" VARCHAR,
  "toss_decision" VARCHAR,
  "player_of_match" VARCHAR,
  "winner" VARCHAR,
  "win_by" DOUBLE,
  "match_id" BIGINT,
  "winner_type" VARCHAR,
  "outcome" VARCHAR,
  "eliminator" VARCHAR,
  "method" VARCHAR,
  "date1" TIMESTAMP,
  "date2" TIMESTAMP,
  "venueid" VARCHAR
);

Players Info With Keys

@kaggle.colearninglounge_ipl_dataset_download_python_tableau_analysis.players_info_with_keys
  • 50.63 KB
  • 642 rows
  • 10 columns
Loading...

CREATE TABLE players_info_with_keys (
  "name" VARCHAR,
  "full_name" VARCHAR,
  "birth_info" VARCHAR,
  "batting_style" VARCHAR,
  "bowling_style" VARCHAR,
  "playing_position" VARCHAR,
  "identifier" VARCHAR,
  "key_cricinfo" BIGINT,
  "bowling_type" VARCHAR,
  "bowling_arm" VARCHAR
);

Playing 11

@kaggle.colearninglounge_ipl_dataset_download_python_tableau_analysis.playing_11
  • 226.67 KB
  • 20900 rows
  • 6 columns
Loading...

CREATE TABLE playing_11 (
  "unnamed_0" BIGINT,
  "match_id" BIGINT,
  "team" VARCHAR,
  "players" VARCHAR,
  "identifier" VARCHAR,
  "key_cricinfo" DOUBLE
);

Venue

@kaggle.colearninglounge_ipl_dataset_download_python_tableau_analysis.venue
  • 3.7 KB
  • 33 rows
  • 3 columns
Loading...

CREATE TABLE venue (
  "id" VARCHAR,
  "venue" VARCHAR,
  "city" VARCHAR
);

Share link

Anyone who has the link will be able to view this.