Baselight

Global Nutrition Adult And Adolescent Dataset

State of Adult and Adolescent Nutrition

@kaggle.amohankumar_global_nutrition_adult_and_adolescent_dataset

Country Dietary Needs
@kaggle.amohankumar_global_nutrition_adult_and_adolescent_dataset.country_dietary_needs

  • 21.42 KB
  • 193 rows
  • 15 columns
iso3

Iso3

country

Country

region

Region

subregion

Subregion

disaggregation

Disaggregation

disagg_value

Disagg.value

section

Section

fruit

Fruit

vegetables

Vegetables

legumes

Legumes

nuts

Nuts

whole_grains

Whole Grains

fish

Fish

dairy

Dairy

red_meat

Red Meat

AFGAfghanistanAsiaSouthern AsialocationNationalDietary needs65.798.1103.831.241.53.291.110.7
AGOAngolaAfricaMiddle AfricalocationNationalDietary needs119.7308.837.811.657.63865.816.8
ALBAlbaniaEuropeSouthern EuropelocationNationalDietary needs138.9129.140.212.331.218.3404.961.6
ANDAndorraEuropeSouthern EuropelocationNationalDietary needs
AREUnited Arab EmiratesAsiaWestern AsialocationNationalDietary needs107.6123.340.631.737.240.5428.429.6
ARGArgentinaLatin America and the CaribbeanSouth AmericalocationNationalDietary needs94123.83.61.610.811.6519.186.7
ARMArmeniaAsiaWestern AsialocationNationalDietary needs91.295.914.718.923.347.9403.762.4
ATGAntigua and BarbudaLatin America and the CaribbeanCaribbeanlocationNationalDietary needs95.5232.143.52.514.346.5223.836.3
AUSAustraliaOceaniaAustralia and New ZealandlocationNationalDietary needs131.9116.823.27.464.928.6666.361.6
AUTAustriaEuropeWestern EuropelocationNationalDietary needs105.7118.46.45.429.221.1558.7106.2

CREATE TABLE country_dietary_needs (
  "iso3" VARCHAR,
  "country" VARCHAR,
  "region" VARCHAR,
  "subregion" VARCHAR,
  "disaggregation" VARCHAR,
  "disagg_value" VARCHAR,
  "section" VARCHAR,
  "fruit" DOUBLE,
  "vegetables" DOUBLE,
  "legumes" DOUBLE,
  "nuts" DOUBLE,
  "whole_grains" DOUBLE,
  "fish" DOUBLE,
  "dairy" DOUBLE,
  "red_meat" DOUBLE
);

Share link

Anyone who has the link will be able to view this.